1
|
Guliy OI, Karavaeva OA, Smirnov AV, Eremin SA, Bunin VD. Optical Sensors for Bacterial Detection. SENSORS (BASEL, SWITZERLAND) 2023; 23:9391. [PMID: 38067765 PMCID: PMC10708710 DOI: 10.3390/s23239391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023]
Abstract
Analytical devices for bacterial detection are an integral part of modern laboratory medicine, as they permit the early diagnosis of diseases and their timely treatment. Therefore, special attention is directed to the development of and improvements in monitoring and diagnostic methods, including biosensor-based ones. A promising direction in the development of bacterial detection methods is optical sensor systems based on colorimetric and fluorescence techniques, the surface plasmon resonance, and the measurement of orientational effects. This review shows the detecting capabilities of these systems and the promise of electro-optical analysis for bacterial detection. It also discusses the advantages and disadvantages of optical sensor systems and the prospects for their further improvement.
Collapse
Affiliation(s)
- Olga I. Guliy
- Institute of Biochemistry and Physiology of Plants and Microorganisms—Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), Saratov 410049, Russia;
| | - Olga A. Karavaeva
- Institute of Biochemistry and Physiology of Plants and Microorganisms—Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), Saratov 410049, Russia;
| | - Andrey V. Smirnov
- Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow 125009, Russia;
| | - Sergei A. Eremin
- Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow 119991, Russia;
| | | |
Collapse
|
2
|
Zhang J, Zhou M, Li X, Fan Y, Li J, Lu K, Wen H, Ren J. Recent advances of fluorescent sensors for bacteria detection-A review. Talanta 2023; 254:124133. [PMID: 36459871 DOI: 10.1016/j.talanta.2022.124133] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
Bacterial infections have become a global public health problem. Rapid and sensitive bacterial detection is of great importance for human health. Among various sensor systems, fluorescence sensor is rapid, portable, multiplexed, and cost-efficient. Herein, we reviewed the current trends of fluorescent sensors for bacterial detection from three aspects (response materials, target and recognition way). The fluorescent materials have the advantages of high fluorescent strength, high stability, and good biocompatibility. They provide a new path for bacterial detection. Several recent fluorescent nanomaterials for bacterial detection, including semiconductor quantum dots (QDs), carbon dots (CDs), up-conversion nanoparticles (UCNPs) and metal organic frameworks (MOFs), were introduced. Their optical properties and detection mechanisms were analyzed and compared. For different response targets in the detection process, we studied the fluorescence strategy using DNA, bacteria, and metabolites as the response target. In addition, we classified the recognition way between nanomaterial and target, including specific recognition methods based on aptamers, antibodies, bacteriophages, and non-specific recognition methods based on biological functional materials. The characteristics of different recognition methods were summarized. Finally, the weaknesses and future development of bacterial fluorescence sensor were discussed. This review provides new insights into the application of fluorescent sensing systems as an important tool for bacterial detection.
Collapse
Affiliation(s)
- Jialin Zhang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China.
| | - Ming Zhou
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Xin Li
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Yaqi Fan
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Jinhui Li
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Kangqiang Lu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Herui Wen
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Jiali Ren
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Changsha, 410004, PR China.
| |
Collapse
|
3
|
Liu F, Chen S, Zou Y, Jiao Y, Tang Y. A simple and efficient fluorescent labeling method in Staphylococcus aureus for real-time tracking of invasive bacteria. Front Microbiol 2023; 14:1128638. [PMID: 36846783 PMCID: PMC9950555 DOI: 10.3389/fmicb.2023.1128638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/24/2023] [Indexed: 02/12/2023] Open
Abstract
Bacterial fluorescent labeling is a powerful tool for the diagnosis and treatment of bacterial infections. Here, we present a simple and efficient labeling strategy for Staphylococcus aureus. Intracellular labeling of bacteria was achieved by heat shock using Cyanine 5.5 (Cy5.5) near-infrared-I dyes in S. aureus (Cy5.5@S. aureus). Several key factors, such as Cy5.5 concentration and labeling time, were systematically evaluated. Further, the cytotoxicity of Cy5.5 and the stability of Cy5.5@S. aureus was evaluated by flow cytometry, inverted fluorescence microscopy, and transmission electron microscopy. In addition, Cy5.5@S. aureus were used to explore the phagocytic behavior of RAW264.7 macrophages. These results proved that Cy5.5@S. aureus had a uniform fluorescence intensity and high luminance; additionally, our method had no significant adverse effects on S. aureus compared to unlabeled S. aureus infections. Our method provides researchers with a useful option for analyzing the behavior of S. aureus as an infectious agent. This technique can be broadly applied to study host cell-bacteria interactions at the molecular level, and to in vivo tracing of bacterial infections.
Collapse
Affiliation(s)
- Fei Liu
- Naval Medical Center, Naval Medical University, Shanghai, China
| | - Sijie Chen
- Department of Nursing, The 940th Hospital of Joint Logistic Support Force of People’s Liberation Army (PLA), Lanzhou, China
| | - Yingxin Zou
- Naval Medical Center, Naval Medical University, Shanghai, China
| | - Yong Jiao
- Naval Medical Center, Naval Medical University, Shanghai, China
| | - Ying Tang
- Naval Medical Center, Naval Medical University, Shanghai, China,*Correspondence: Ying Tang,
| |
Collapse
|
4
|
Ultrasensitive hairpin mediated upconversion fluorescence biosensor for Staphylococcus aureus detection in foods and waters exploiting g-C 3N 4-assisted catalysis. Anal Chim Acta 2023; 1239:340738. [PMID: 36628775 DOI: 10.1016/j.aca.2022.340738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
A novel g-C3N4 nanosheets (g-C3N4 NSs)-assisted upconversion fluorescent aptasensor was proposed for Staphylococcus aureus (S. aureus) detection by adopting hybridization chain reaction (HCR) as a sensitizer. Two hairpin (H1 and H2) structured DNA probes were engineered predicated on the partial complementary sequence (cDNA) of S. aureus aptamer and modified on the exterior of the upconversion nanoparticles (UCNPs), respectively. The presence of S. aureus initiated the HCR system and activated H1 and H2 probes to form a double-helix away from the g-C3N4 NSs vicinity. This led to the decrease in peroxidase-like activity (PA) of the g-C3N4 NSs and corresponding fluorescence recovery proportional to the concentration of S. aureus (10-106 cfu mL-1). The method was applied to real food samples with acceptable recoveries (91.1-101.6%) and further validated by traditional plate counting method (p > 0.05).
Collapse
|
5
|
Deng C, Li H, Qian S, Fu P, Zhou H, Zheng J, Wang Y. An Emerging Fluorescent Carbon Nanobead Label Probe for Lateral Flow Assays and Highly Sensitive Screening of Foodborne Toxins and Pathogenic Bacteria. Anal Chem 2022; 94:11514-11520. [PMID: 35959591 DOI: 10.1021/acs.analchem.2c01430] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
By virtue of the fascinating merits of low cost, rapid screening, and on-site detection, fluorescence lateral flow assays (FLFAs) have attracted considerable attention. Their detection limits are closely associated with the label probes used. The development of high-performance and robust phosphors remains a great challenge. Herein, we presented a new label probe, i.e., fluorescent carbon nanobeads (FCNBs), for FLFAs. Monodispersive, water-soluble, and highly emissive FCNBs were facilely prepared via a hydrothermal carbonization manner. Their abundant amino groups were beneficial for versatile surface functionalization. After being modified by biomolecules, the fabricated FCNB reporter probes were adopted for the construction of lateral flow test strips toward representative foodborne toxins, i.e., aflatoxin B1 (AFB1), and pathogenic bacteria, i.e., Staphylococcus aureus (S. aureus), respectively. The detection limits (0.01 ng/mL for AFB1 and 102 cfu/mL for S. aureus) were about 1 or 2 orders of magnitude lower than most reported methods. Furthermore, the proposed test strips were successfully applied for the quantitative, accurate, and rapid screening of AFB1 and S. aureus in food samples. This work provided a promising label probe for FLFAs and would open the opportunity to exploit a sensing platform by modifying different ligands onto the FCNBs.
Collapse
Affiliation(s)
- Chen Deng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P.R. China.,Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), Ningbo 315300, P.R. China
| | - Hui Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, P.R. China
| | - Sihua Qian
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), Ningbo 315300, P.R. China
| | - Pan Fu
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), Ningbo 315300, P.R. China
| | - Hualan Zhou
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P.R. China
| | - Jianping Zheng
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), Ningbo 315300, P.R. China
| | - Yuhui Wang
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), Ningbo 315300, P.R. China
| |
Collapse
|