1
|
Zhang X, Hua S, Feng Q, Ding CF, Wu Y, Yan Y. A novel hydrophilic polymer-coated magnetic nanomaterial based on the HILIC strategy for fast separation of glycopeptides and glycosylated exosomes. Anal Bioanal Chem 2023; 415:5755-5767. [PMID: 37540345 DOI: 10.1007/s00216-023-04857-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/19/2023] [Accepted: 07/03/2023] [Indexed: 08/05/2023]
Abstract
Novel hydrophilic poly(N, N-methylenebisacrylamide/1,2-epoxy-5-hexene) coated magnetic nanospheres functionalized with 2-aminopurine (denoted as Fe3O4@poly(MBA/EH)@2AP) for enriching glycopeptides and glycosylated exosomes were successfully obtained using a simple and green method on the basis of the HILIC (hydrophilic interaction liquid chromatography) enrichment strategy. The high density of polar groups endows the material with amazing hydrophilicity, enabling the nanomaterial to successfully capture glycopeptides and glycosylated exosomes within 1 min. Meanwhile, the materials demonstrated great sensitivity (0.01 fmol/μL), good loading capability (125 μg/mg), high selectivity (BSA:HRP = 1000:1), and repeatability (more than 10 times). Besides, the material was applied in the analysis of bio-samples, a total of 290 glycosylated peptides and 184 glycosylation sites mapping to 185 glycoproteins were identified in the serum of uremic patients. Besides, 42 glycopeptides were enriched from the saliva of healthy people. At the same time, it was verified by TEM and western blot that the complete glycosylated exosomes were successfully captured from the serum of the uremic patients. All experiments have demonstrated that Fe3O4@poly(MBA/EH)@2AP has a promising future in practical applications.
Collapse
Affiliation(s)
- Xiaoya Zhang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Shuweng Hua
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Quanshou Feng
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Chuan-Fan Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China.
| | - Yongyao Wu
- Li Huili East Hospital of Ningbo Medical Center, Ningbo, China
| | - Yinghua Yan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
2
|
Han S, Yan Z, Huang X, Cai S, Zhao M, Zheng Y, Liu X, Xu H, Xie Y, Hou R, Duan JA, Liu R. Response boosting-based approach for absolute quantification of gelatin peptides using LC-MS/MS. Food Chem 2022; 390:133111. [DOI: 10.1016/j.foodchem.2022.133111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/04/2022] [Accepted: 04/26/2022] [Indexed: 11/04/2022]
|
3
|
Kleinberg A, Joseph R, Mao Y, Li N. Ultrasensitive disulfide scrambling analysis of mAbs by LC-MS with post-column reduction and glycine signal enhancement. Anal Biochem 2022; 653:114773. [PMID: 35688259 DOI: 10.1016/j.ab.2022.114773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/20/2022] [Accepted: 05/31/2022] [Indexed: 11/15/2022]
Abstract
Explicitly confirming the complete disulfide bond linkage pattern of a monoclonal antibody (mAb) presents a challenge in the biopharmaceutical industry. Although proper native disulfide connections are in high abundance for analytical purposes within a peptide mapping digest under non-reducing conditions, disulfide scrambling can also exist but be difficult to detect, let alone characterize, particularly at low levels. Here, we developed an ultrasensitive high-confidence method for identifying explicit disulfide connectivity in mAbs. By applying a post-column addition of tris (2-carboxyethyl)phosphine hydrochloride (TCEP) to the liquid chromatography (LC) eluent of a non-reduced mAb digest, partial reduction of disulfide peptides is achieved after the initial peptide separation, allowing both the parent disulfide and its reduced daughter peptides to co-elute for simultaneous mass spectrometry (MS) detection. Combining this concept with the recently discovered ability of glycine to enhance MS signal when added to the LC eluent, we demonstrate a method for detecting, characterizing and quantifying low-abundance disulfide scrambling in mAbs.
Collapse
Affiliation(s)
- Andrew Kleinberg
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY, 10591, United States
| | - Rachel Joseph
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY, 10591, United States
| | - Yuan Mao
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY, 10591, United States.
| | - Ning Li
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, NY, 10591, United States
| |
Collapse
|
4
|
Bai H, Zhang B, Cheng X, Liu J, Wang X, Qin W, Zhang M. Synthesis of zwitterionic polymer modified graphene oxide for hydrophilic enrichment of N-glycopeptides from urine of healthy subjects and patients with lung adenocarcinoma. Talanta 2022; 237:122938. [PMID: 34736669 DOI: 10.1016/j.talanta.2021.122938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/26/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022]
Abstract
As one of the most common and important post-translational modifications, protein N-glycosylation plays essential roles in many biological processes and have long been considered closely correlated with the occurrence and progression of multiple diseases. Systematic characterization of these disease-related protein N-glycosylation is one of the most convenient ways for new diagnostic biomarker and therapeutic drug target discovering. However, the biological samples are extremely complex and the abundance of N-glycoproteins are especially low, which make highly efficient N-glycoprotein/glycopeptide enrichment before mass spectrometry analysis a prerequisite. In this work, a new type of hydrophilic material (GO-pDMAPS) was prepared by in situ growth of linear zwitterionic polymer chains on the surface of GO and it was successfully applied for N-glycopeptide enrichment from human urine. Due to the excellent hydrophilicity and the facilitate interactions between this GO-pDMAPS and the targets, a total of 1426 N-glycosylated sites corresponding to 766 N-glycoproteins as well as 790 N-glycosylation sites corresponding to 470 N-glycoproteins were enriched and identified from urine of healthy subjects and patients with lung adenocarcinoma, respectively. Among which, 27 N-glycoproteins were expressed exclusively and 4 N-glycoproteins were upregulated at least 3 times comparing with the healthy group, demonstrating the tremendous potential of this new hydrophilic material for large scale and in depth N-glycoproteome research.
Collapse
Affiliation(s)
- Haihong Bai
- Clinical Laboratory Medicine, Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, PR China; Phase Ⅰ Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, PR China
| | - Baoying Zhang
- Phase Ⅰ Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, PR China; State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Institute of Lifeomics, Beijing Proteome Research Center, Beijing, 102206, PR China
| | - Xiaoqiang Cheng
- Phase Ⅰ Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, PR China
| | - Ju Liu
- Phase Ⅰ Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, PR China
| | - Xinghe Wang
- Phase Ⅰ Clinical Trial Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, PR China
| | - Weijie Qin
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Institute of Lifeomics, Beijing Proteome Research Center, Beijing, 102206, PR China
| | - Man Zhang
- Clinical Laboratory Medicine, Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, PR China.
| |
Collapse
|
5
|
Guo L, Nayak S, Mao Y, Li N. Glycine additive enhances sensitivity for N- and O-glycan analysis with hydrophilic interaction chromatography-electrospray ionization-mass spectrometry. Anal Biochem 2021; 635:114447. [PMID: 34742721 DOI: 10.1016/j.ab.2021.114447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/01/2021] [Indexed: 11/30/2022]
Abstract
Glycosylation is critical for many biological processes and biotherapeutic development. One of the most powerful approaches for analyzing released glycans is hydrophilic interaction chromatography coupled with electrospray ionization mass spectrometry (HILIC-ESI-MS). The high sensitivity of MS is crucial for detecting low-abundance glycans and elucidating their structures. In this study, we presented a simple solution to boost MS response of procainamide (ProcA) labeled glycans for 2- to over 60-fold by including 1 mM glycine in ammonium formate mobile phases for HILIC-ESI-MS. The glycine additive increased charge states, enhanced ion intensities and signal-to-noise ratios, and improved tandem MS spectral quality of various N- and O-glycans without affecting chromatographic performance. Furthermore, more homogeneous ionization among different ProcA labeled glycans was achieved by using the glycine additive, resulting in more comparable quantitative results relative to fluorescence-based quantification. We demonstrated that ammonium formate caused ion suppression to ProcA labeled glycans, which were likely mitigated by glycine with enhanced ESI ionization. Overall, simple addition of glycine to mobile phases during HILIC-ESI-MS analysis significantly improves MS detection sensitivity and will facilitate future profiling and quantitation of glycans released from N- and O-glycoproteins.
Collapse
Affiliation(s)
- Lili Guo
- Analytical Chemistry, Regeneron Pharmaceuticals Inc, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, United States
| | - Shruti Nayak
- Analytical Chemistry, Regeneron Pharmaceuticals Inc, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, United States
| | - Yuan Mao
- Analytical Chemistry, Regeneron Pharmaceuticals Inc, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, United States.
| | - Ning Li
- Analytical Chemistry, Regeneron Pharmaceuticals Inc, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, United States
| |
Collapse
|