Rasin P, Manakkadan V, Vadakkedathu Palakkeezhillam VN, Haribabu J, Echeverria C, Sreekanth A. Simple Fluorescence Sensing Approach for Selective Detection of Fe
3+ Ions: Live-Cell Imaging and Logic Gate Functioning.
ACS OMEGA 2022;
7:33248-33257. [PMID:
36157778 PMCID:
PMC9494683 DOI:
10.1021/acsomega.2c03718]
[Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
A pyrene-based fluorescent chemosensor APSB [N-(pyrene-1-ylmethylene) anthracen-2-amine] was designed and developed by a simple condensation reaction between pyrene carboxaldehyde and 2-aminoanthracene. The APSB fluorescent sensor selectively binds Fe3+ in the presence of other metal ions. Apart from this, APSB shows high selectivity and sensitivity toward Fe3+ ion detection. The detection limit for APSB was 1.95 nM, and the binding constant (K b) was obtained as 8.20 × 105 M-1 in DMSO/water (95/5, v/v) medium. The fluorescence quantum yields for APSB and APSB-Fe3+ were calculated as 0.035 and 0.573, respectively. The function of this fluorescent sensor APSB can be explained through the photo-induced electron transfer mechanism which was further proved by density functional theory studies. Finally, a live-cell image study of APSB in HeLa cells was also carried out to investigate the cell permeability of APSB and its efficiency for selective detection of Fe3+ in living cells.
Collapse