1
|
Scroccarello A, Della Pelle F, Di Giulio T, Mazzotta E, Mancini A, Mascini M, Oliva E, Malitesta C, Compagnone D. Bimetallic nanocolloidal plasmonic array for polyphenol characterization and calibration-free antioxidant capacity evaluation. Mikrochim Acta 2024; 191:623. [PMID: 39322852 DOI: 10.1007/s00604-024-06709-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024]
Abstract
A bimetallic plasmonic nanoparticles-based approach for the untargeted evaluation of phenolic compounds (PC)-pattern and antioxidant capacity (AoC) is proposed. The rationale relies on the PC's ability to drive the formation of bimetallic silver/gold nanocolloidal 'probes' with different conformations. Ag/Au bimetallic nanostructures, according to the PCs' amount and class, return characteristic plasmonic and colorimetric tags. Plasmonic indexes are proposed to assess the dominant PC classes, while the colorimetric response, analyzed simply by a smartphone, is employed to obtain an AoC score, without calibration. The methods were tested with PCs belonging to different chemical classes, and challenged to classify different food samples. The proposed approach allows PC-dominant class identification and AoC-evaluation consistent with HPLC-MS/MS and conventional photometric assays.
Collapse
Affiliation(s)
- Annalisa Scroccarello
- Department of Bioscience and Technologies for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, 64100, Teramo, TE, Italy
| | - Flavio Della Pelle
- Department of Bioscience and Technologies for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, 64100, Teramo, TE, Italy.
| | - Tiziano Di Giulio
- Laboratorio Di Chimica Analitica, Dipartimento Di Scienze E Tecnologie Biologiche E Ambientali (Di.S.Te.B.A.), Università del Salento, Via Monteroni, 73100, Lecce, LE, Italy
| | - Elisabetta Mazzotta
- Laboratorio Di Chimica Analitica, Dipartimento Di Scienze E Tecnologie Biologiche E Ambientali (Di.S.Te.B.A.), Università del Salento, Via Monteroni, 73100, Lecce, LE, Italy
| | - Alessandra Mancini
- Department of Bioscience and Technologies for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, 64100, Teramo, TE, Italy
| | - Marcello Mascini
- Department of Bioscience and Technologies for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, 64100, Teramo, TE, Italy
| | - Eleonora Oliva
- Department of Bioscience and Technologies for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, 64100, Teramo, TE, Italy
| | - Cosimino Malitesta
- Laboratorio Di Chimica Analitica, Dipartimento Di Scienze E Tecnologie Biologiche E Ambientali (Di.S.Te.B.A.), Università del Salento, Via Monteroni, 73100, Lecce, LE, Italy
| | - Dario Compagnone
- Department of Bioscience and Technologies for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini, 1, 64100, Teramo, TE, Italy.
| |
Collapse
|
2
|
Abbasi-Moayed S, Orouji A, Hormozi-Nezhad MR. Multiplex Detection of Biogenic Amines for Meat Freshness Monitoring Using Nanoplasmonic Colorimetric Sensor Array. BIOSENSORS 2023; 13:803. [PMID: 37622889 PMCID: PMC10452313 DOI: 10.3390/bios13080803] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/27/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023]
Abstract
Biogenic amines (BAs) were presented as significant markers for the evaluation of the spoilage of meat and meat products. In this work, a colorimetric sensor array was developed for the discrimination and detection of spermine (SP), spermidine (SD), histamine (HS), and tryptamine (TP) as important BAs in food assessment. For this aim, two important spherical plasmonic nanoparticles, namely gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs), were utilized as the sensing elements of the probes. The cross-reactive interaction of the target biogenic amines and the plasmonic nanoparticles caused the aggregation-induced UV-Vis spectra changes, which were accompanied by visual color variation in the solution. The collected responses were analyzed by principal component analysis-linear discrimination analysis (PCA-LDA) to classify the four BAs. This colorimetric sensor array can also discriminate between the individual BAs and their mixture accurately. Partial least squares regression (PLS-R) was also utilized for quantitative analysis of the BAs. The wide linear concentration ranges of 0.1-10.0 µM for the four BAs and desirable figures of merits (FOMs) showed the potential of the developed sensor for quantitative detection of the BAs. Finally, the practical ability of the developed probe was studied by the determination of the BAs in the meat samples, which successfully proved the potential of the colorimetric sensor array in a food sample.
Collapse
Affiliation(s)
- Samira Abbasi-Moayed
- Department of Analytical Chemistry, Faculty of chemistry, Kharazmi University, Tehran 15719-14911, Iran
| | - Afsaneh Orouji
- Department of Chemistry, Sharif University of Technology, Tehran 11155-9516, Iran;
| | - Mohammad Reza Hormozi-Nezhad
- Department of Chemistry, Sharif University of Technology, Tehran 11155-9516, Iran;
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran 11155-9516, Iran
| |
Collapse
|
3
|
Covalent organic framework in situ grown on Fe 3O 4 hollow microspheres for stir bar sorptive-dispersive microextraction of triazole pesticides. Mikrochim Acta 2022; 190:34. [PMID: 36538150 DOI: 10.1007/s00604-022-05613-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/03/2022] [Indexed: 01/07/2023]
Abstract
Based on covalent organic framework (COF) 1,3,5-tris-(4-formylphenyl)benzene-benzidine (TFPB-BD) in situ grown on Fe3O4 hollow microspheres and combined with gas chromatography-flame thermionic detector, a rapid and simple stir bar sorptive-dispersive microextraction method was developed for the determination of five triazole pesticides (paclobutrazol, hexaconazole, flusilazole, propiconazole, and tebuconazole). The synthesized TFPB-BD/Fe3O4 microspheres were characterized by transmission electron microscope, vibrating sample magnetometer, and thermogravimetric analysis, which showed that the material has strong magnetism and higher load capacity of COF. Under optimal conditions, the extraction equilibrium could be achieved within 9 min with detection limits of 0.17-1.48 μg L-1 (S/N = 3) and a linear range of 5-1000 μg L-1. The developed method was applied to the determination of trace triazole pesticides in apples, pears, and cabbages with recoveries from 81 to 117%.
Collapse
|
4
|
Çakır O, Bakhshpour M, Göktürk I, Yılmaz F, Baysal Z. Sensitive and selective detection of amitrole based on molecularly imprinted nanosensor. J Mol Recognit 2021; 34:e2929. [PMID: 34378825 DOI: 10.1002/jmr.2929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 04/30/2021] [Accepted: 07/26/2021] [Indexed: 11/09/2022]
Abstract
SPR sensor used for amitrole detection was prepared without using any modification. Molecularly imprinted SPR sensor enabled high selectivity for amitrole pesticide. Amino acid-based functional monomer MATrp was integrated as a recognition element. Tailor-made SPR sensor enables real-time monitoring of amitrole pesticide. Synthetic recognition sites provided by MATrp were prepared without labeling.
Collapse
Affiliation(s)
- Oğuz Çakır
- Science and Technology Application and Research Center, Dicle University, Diyarbakır, Turkey
| | | | - Ilgım Göktürk
- Department of Chemistry, Hacettepe University, Beytepe, Turkey
| | - Fatma Yılmaz
- Department of Chemistry Technology, Bolu Abant Izzet Baysal University, Gerede, Turkey
| | - Zübeyde Baysal
- Faculty of Science, Department of Chemistry, Dicle University, Diyarbakır, Turkey
| |
Collapse
|