1
|
Yang H, Huang X, Yang M, Zhang X, Tang F, Gao B, Gong M, Liang Y, Liu Y, Qian X, Li H. Advanced analytical techniques for authenticity identification and quality evaluation in Essential oils: A review. Food Chem 2024; 451:139340. [PMID: 38678649 DOI: 10.1016/j.foodchem.2024.139340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 05/01/2024]
Abstract
Essential oils (EO), secondary metabolites of plants are fragrant oily liquids with antibacterial, antiviral, anti-inflammatory, anti-allergic, and antioxidant effects. They are widely applied in food, medicine, cosmetics, and other fields. However, the quality of EOs remain uncertain owing to their high volatility and susceptibility to oxidation, influenced by factors such as the harvesting season, extraction, and separation techniques. Additionally, the huge economic value of EOs has led to a market marked by widespread and varied adulteration, making the assessment of their quality challenging. Therefore, developing simple, quick, and effective identification techniques for EOs is essential. This review comprehensively summarizes the techniques for assessing EO quality and identifying adulteration. It covers sensory evaluation, physical and chemical property evaluation, and chemical composition analysis, which are widely used and of great significance for the quality evaluation and adulteration detection of EOs.
Collapse
Affiliation(s)
- Huda Yang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xiaoying Huang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; Jiangxi Guxiangjinyun Great Health Industry Co. Ltd, Nanchang 330096, China.
| | - Ming Yang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xiaofei Zhang
- Jiangxi Guxiangjinyun Great Health Industry Co. Ltd, Nanchang 330096, China; College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Fangrui Tang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; Jiangxi Guxiangjinyun Great Health Industry Co. Ltd, Nanchang 330096, China
| | - Beibei Gao
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Mengya Gong
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yong Liang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yang Liu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xingyi Qian
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Huiting Li
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; Jiangxi Guxiangjinyun Great Health Industry Co. Ltd, Nanchang 330096, China.
| |
Collapse
|
2
|
Cordeiro KC, Scaffo J, Flexa BN, Gama CCA, Ferreira MA, Cruz RAS, Aguiar-Alves F, Rocha L, Machado FP, Fernandes CP. Characterization of bergamot essential oil: chemical, microbiological and colloidal aspects. BRAZ J BIOL 2024; 83:e275622. [PMID: 38422264 DOI: 10.1590/1519-6984.275622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/12/2023] [Indexed: 03/02/2024] Open
Abstract
Citrus bergamia is a citric species known as bergamot. The species is widely used due to its derivatives, such as juices, extracts, and essential oil. Specifically, the bergamot essential oil (BEO) is of great interest, with a chemical composition rich in terpenes and esters. Considering its chemical composition, bioactivity, and great economic potential, the characterization of BEO should be studied. However, this essential oil is almost unexplored in terms of a characterization associated with colloids. Chemical characterization was carried out by gas-chromatography coupled to a mass spectrometer and by gas-chromatography coupled to a flame ionization detector. Antibacterial activity against Staphylococcus aureus and Escherichia coli was carried out to confirm the bioactivity of this important essential oil. Dynamic light scattering analysis was performed to create a pattern of droplet size distribution of BEO. Major compounds of BEO were linalyl acetate, limonene, and linalool. The BEO was active against E. coli and presented a MIC value of 2.000 µg/mL, while values of MIC and MBC higher than 2.000 µg/mL were observed for S. aureus. The dynamic light scattering analysis revealed a mean hydrodynamic diameter of 65.7 ± 2.2 nm. After a 1:10 dilution it was observed reduction of mean diameter and enhancement of the percentagem of low size droplets, resepctively 44.1 ± 1.2 nm and 14.5 ± 0.5 nm (28.8 ± 1.2%). Higher droplets and reduced polydispersity index were observed after 1:100 dilution. In the present study, the chemical characterization was in accordance with the species, as the characteristic chemical markers of the species were found. Moreover, it has presented antibacterial activity as expected for the BEO. The analysis of the colloid showed a pattern of droplet size distribution following the Ostwald ripening mechanism after dilution.
Collapse
Affiliation(s)
- K C Cordeiro
- Universidade Federal do Amapá - UNIFAP, Programa de Pós-graduação em Ciências Farmacêuticas, Macapá, AP, Brasil
- Universidade Federal do Amapá - UNIFAP, Laboratório de Nanobiotecnologia Fitofarmacêutica, Macapá, AP, Brasil
| | - J Scaffo
- Universidade Federal Fluminense - UFF, Laboratório de Epidemiologia Molecular e Biotecnologia, Niterói, RJ, Brasil
- Universidade Federal Fluminense - UFF, Programa de Pós-graduação em Ciências Aplicadas à Produtos para Saúde, Niterói, RJ, Brasil
| | - B N Flexa
- Universidade Federal do Amapá - UNIFAP, Programa de Pós-graduação em Ciências Farmacêuticas, Macapá, AP, Brasil
- Universidade Federal do Amapá - UNIFAP, Laboratório de Nanobiotecnologia Fitofarmacêutica, Macapá, AP, Brasil
| | - C C A Gama
- Universidade Federal do Amapá - UNIFAP, Programa de Pós-graduação em Ciências Farmacêuticas, Macapá, AP, Brasil
- Universidade Federal do Amapá - UNIFAP, Laboratório de Nanobiotecnologia Fitofarmacêutica, Macapá, AP, Brasil
| | - M A Ferreira
- Universidade Federal do Amapá - UNIFAP, Programa de Pós-graduação em Ciências Farmacêuticas, Macapá, AP, Brasil
- Universidade Federal do Amapá - UNIFAP, Laboratório de Nanobiotecnologia Fitofarmacêutica, Macapá, AP, Brasil
| | - R A S Cruz
- Universidade Federal do Amapá - UNIFAP, Programa de Pós-graduação em Ciências Farmacêuticas, Macapá, AP, Brasil
- Universidade Federal do Amapá - UNIFAP, Laboratório de Nanobiotecnologia Fitofarmacêutica, Macapá, AP, Brasil
| | - F Aguiar-Alves
- Universidade Federal Fluminense - UFF, Laboratório de Epidemiologia Molecular e Biotecnologia, Niterói, RJ, Brasil
- Palm Beach Atlantic University, Lloyd L. Gregory School of Pharmacy, Department of Pharmaceutical Sciences, Florida, FL, United States
| | - L Rocha
- Universidade Federal Fluminense - UFF, Laboratório de Tecnologia de Produtos Naturais, Niterói, RJ, Brasil
| | - F P Machado
- Universidade Federal Fluminense - UFF, Laboratório de Tecnologia de Produtos Naturais, Niterói, RJ, Brasil
| | - C P Fernandes
- Universidade Federal do Amapá - UNIFAP, Programa de Pós-graduação em Ciências Farmacêuticas, Macapá, AP, Brasil
- Universidade Federal do Amapá - UNIFAP, Laboratório de Nanobiotecnologia Fitofarmacêutica, Macapá, AP, Brasil
- Universidade Federal Fluminense - UFF, Laboratório de Epidemiologia Molecular e Biotecnologia, Niterói, RJ, Brasil
| |
Collapse
|
3
|
Saghir SA, Alnaimat SM, Dmour SM, Al-Tarawni AH, Abdelnour SA, Ahmeda AF, Arisha AH, Hawwal MF, Alanzi AR, Mothana RA, Lindequist U. The ameliorative effect of bergamot oil nano-emulsion in stressed rabbit bucks: Influence on blood biochemical parameters, redox status, immunity indices, inflammation markers, semen quality, testicular changes and the expression of HSPs genes. Saudi Pharm J 2023; 31:101691. [PMID: 37457368 PMCID: PMC10345481 DOI: 10.1016/j.jsps.2023.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023] Open
Abstract
This work explored the activities of bergamot oil nano-emulsion (NBG) in modulating blood biochemical parameters, redox status, immunity indices, inflammation markers, semen quality, testicular changes and the expression of HSPs genes in stressed rabbit bucks. Twenty-four mature rabbit bucks (5 months) were randomly divided into three groups; control group (NBG0) received 1 ml of distilled water, while the other two groups received NBG orally at doses of 50 and 100 mg/kg (bw) twice a week. The present study's findings revealed that treated groups had lower values of total and direct bilirubin, triglyceride, lactate dehydrogenase, and creatinine compared with NBG0 group (p < 0.05). NBG100 group recorded the greatest of total protein, albumin, GPx, T3 and T4 values as well as the lowest values of uric acid, MDA, and indirect bilirubin. Both treated groups showed significantly reduced 8-OhDG, Amyloid A, TLR 4, while significantly increased nitric oxide, IgA, IgM, TAC, and SOD levels. Semen characteristics such as volume, sperm count, sperm motility, normal sperm, and vitality were significantly higher in the NBG100 group compared to the NBG50 and NBG0 groups, whereas sperm abnormalities and dead sperm were significantly reduced. HSP70, HSP72, and HSPA9 gene overexpression showed that testicular integrity was maintained after buck received oral doses of 50 or 100 mg/kg of NBG. Existing findings indicate that oral administration of NBG improves heat tolerance in rabbit bucks primarily as e result of its antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Sultan A.M. Saghir
- Department of Medical Analysis. Princess Aisha Bint Al-Hussein College of Nursing and Medical Sciences, Al-Hussein Bin Talal University, Ma‘an 71111, Jordan
| | - Sulaiman M. Alnaimat
- Department of Medical Analysis. Princess Aisha Bint Al-Hussein College of Nursing and Medical Sciences, Al-Hussein Bin Talal University, Ma‘an 71111, Jordan
- Department of Biology Department, Al-Hussein Bin Talal University, Ma’an, Jordan
| | - Saif M. Dmour
- Department of Medical Analysis. Princess Aisha Bint Al-Hussein College of Nursing and Medical Sciences, Al-Hussein Bin Talal University, Ma‘an 71111, Jordan
| | | | - Sameh A. Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, 44519 Zagazig, Egypt
| | - Ahmad F. Ahmeda
- Department of Basic Medical Sciences, College of Medicine, Ajman University, Ajman 346, United Arab Emirates
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| | - Ahmed H. Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo, Badr City 11829, Egypt
- Department of Physiology, Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mohammed F. Hawwal
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah R. Alanzi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ulrike Lindequist
- Department of Pharmaceutical Biology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| |
Collapse
|
4
|
Lu M, Tang Q, Zhou C, Fang Z, Fan Z, Li X, Han R, Tong X. Quantitative evaluation and chromatographic fingerprinting for the quality assessment of Pudilan tablet. ACTA CHROMATOGR 2022. [DOI: 10.1556/1326.2022.01084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
An easy, quick, and sensitive approach adopting ultra-performance liquid chromatography (UPLC) equipped with diode array detector was used to analyze and systematically evaluate the quality of Pudilan tablets manufactured by 12 distinct pharmaceutical companies. In this research, 15 peaks were chosen as the common peaks to assess the similarities for different batches (S1–S43) of Pudilan tablet samples. In comparison with the control fingerprint, similarity values for 43 batches of samples exceeded 0.922. In addition, by analyzing the reference substances of epigoitrin, caffeic acid, chlorogenic acid, acetylcorynoline, baicalin and baicanshialein, the chromatogram of the 6 reference substances was established. The recoveries for the reference substances which demonstrated good regression in the linear range (r
2 > 0.999) were in the range of 98.3–101.1%. The results demonstrated that the established method was highly accurate, efficient and reliable. This study provides a valid, dependable and pragmatic method to evaluate the quality of Pudilan tablet.
Collapse
Affiliation(s)
- Mengya Lu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Qianqian Tang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Chenyu Zhou
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Zhizheng Fang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Zheng Fan
- Medical Department, Taihe Hospital of Chinese Medicine, Taihe 236600, China
| | - Xiangyu Li
- Department of Research and Development, Anhui Jiren Pharmaceutical Company, Bozhou 236800, China
| | - Rongchun Han
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xiaohui Tong
- School of Life Sciences, Anhui University of Chinese Medicine, Hefei 230012, China
| |
Collapse
|
5
|
Li Y, Liu S, Zhao C, Zhang Z, Nie D, Tang W, Li Y. The Chemical Composition and Antibacterial and Antioxidant Activities of Five Citrus Essential Oils. Molecules 2022; 27:molecules27207044. [PMID: 36296637 PMCID: PMC9607008 DOI: 10.3390/molecules27207044] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/06/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Increasing concerns over the use of antimicrobial growth promoters in animal production has prompted the need to explore the use of natural alternatives such as phytogenic compounds and probiotics. Citrus EOs have the potential to be used as an alternative to antibiotics in animals. The purpose of this research was to study the antibacterial and antioxidant activities of five citrus EOs, grapefruit essential oil (GEO), sweet orange EO (SEO), bergamot EO (BEO), lemon EO (LEO) and their active component d-limonene EO (DLEO). The chemical composition of EOs was analyzed by gas chromatography–mass spectrometry (GC-MS). The antibacterial activities of the EOs on three bacteria (Escherichia coli, Salmonella and Lactobacillus acidophilus) were tested by measuring the minimum inhibitory concentration (MIC), minimal bactericidal concentration (MBC) and inhibition zone diameter (IZD). The antioxidant activities of EOs were evaluated by measuring the free radical scavenging activities of DPPH and ABTS. We found that the active components of the five citrus EOs were mainly terpenes, and the content of d-limonene was the highest. The antibacterial test showed that citrus EOs had selective antibacterial activity, and the LEO had the best selective antibacterial activity. Similarly, the LEO had the best scavenging ability for DPPH radicals, and DLEO had the best scavenging ability for ABTS. Although the main compound of the five citrus EOs was d-limonene, the selective antibacterial and antioxidant activity of them might not be primarily attributed to the d-limonene, but some other compounds’ combined action.
Collapse
|