1
|
Carducci NGG, Dey S, Hickey DP. Recent Developments and Applications of Microbial Electrochemical Biosensors. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:149-183. [PMID: 38273205 DOI: 10.1007/10_2023_236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
This chapter provides a comprehensive overview of microbial electrochemical biosensors, which are a unique class of biosensors that utilize the metabolic activity of microorganisms to convert chemical signals into electrical signals. The principles and mechanisms of these biosensors are discussed, including the different types of microorganisms that can be used. The various applications of microbial electrochemical biosensors in fields such as environmental monitoring, medical diagnostics, and food safety are also explored. The chapter concludes with a discussion of future research directions and potential advancements in the field of microbial electrochemical biosensors.
Collapse
Affiliation(s)
- Nunzio Giorgio G Carducci
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - Sunanda Dey
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - David P Hickey
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
2
|
Zang Y, Cao B, Zhao H, Xie B, Ge Y, Liu H, Yi Y. Mechanism and applications of bidirectional extracellular electron transfer of Shewanella. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1863-1877. [PMID: 37787043 DOI: 10.1039/d3em00224a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Electrochemically active microorganisms (EAMs) play an important role in the fields of environment and energy. Shewanella is the most common EAM. Research into Shewanella contributes to a deeper comprehension of EAMs and expands practical applications. In this review, the outward and inward extracellular electron transfer (EET) mechanisms of Shewanella are summarized and the roles of riboflavin in outward and inward EET are compared. Then, four methods for the enhancement of EET performance are discussed, focusing on riboflavin, intracellular reducing force, biofilm formation and substrate spectrum, respectively. Finally, the applications of Shewanella in the environment are classified, and the restrictions are discussed. Potential solutions and promising prospects for Shewanella are also provided.
Collapse
Affiliation(s)
- Yuxuan Zang
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, No. 37, Xueyuan Road, Haidian District, Beijing 100191, China.
- International Joint Research Center of Aerospace Biotechnology and Medical Engineering, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Bo Cao
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, No. 37, Xueyuan Road, Haidian District, Beijing 100191, China.
- International Joint Research Center of Aerospace Biotechnology and Medical Engineering, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Hongyu Zhao
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, No. 37, Xueyuan Road, Haidian District, Beijing 100191, China.
- International Joint Research Center of Aerospace Biotechnology and Medical Engineering, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Beizhen Xie
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, No. 37, Xueyuan Road, Haidian District, Beijing 100191, China.
- International Joint Research Center of Aerospace Biotechnology and Medical Engineering, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Yanhong Ge
- Infore Environment Technology Group, Foshan 528000, Guangdong Province, China
| | - Hong Liu
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, No. 37, Xueyuan Road, Haidian District, Beijing 100191, China.
- International Joint Research Center of Aerospace Biotechnology and Medical Engineering, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Yue Yi
- School of Life, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Haidian District, Beijing, 100081, China.
| |
Collapse
|
3
|
Zang Y, Cao B, Zhao H, Xie B, Ge Y, Yi Y, Liu H. On-site determination of water toxicity based on freeze-dried electrochemically active bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161432. [PMID: 36623651 DOI: 10.1016/j.scitotenv.2023.161432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Our previous studies have reported water toxicity determination with a fresh electrochemically active bacteria (EAB) suspension as the sensing element, which exhibits high sensitivity and has great prospects in providing early warning about water pollution. However, because the preparation of fresh EAB suspensions is time-consuming, these studies are not suitable for the on-site determination of water toxicity. To solve this problem, this study investigated the rapid preparation of an EAB suspension by the rehydration of freeze-dried EABs and established a novel method for the on-site determination of water toxicity based on the freeze-dried EAB model strain Shewanella oneidensis MR-1. The results demonstrate that the optimal cryoprotectant for S. oneidensis MR-1 freeze drying is 7.5 % (w/v) skimmed milk powder. Compared with fresh S. oneidensis MR-1, freeze-dried S. oneidensis MR-1 exhibits similar extracellular electron transfer (EET) performance (74.7 % ± 0.3 %) and slightly lower sensitivity for water toxicity determination (65.8 % ± 2.2 %) with the optimal cryoprotectant. On-site determination of water toxicity was realized by using freeze-dried S. oneidensis MR-1, and the detection limits of five common toxic pollutants (Cd2+, Pb2+, Cu2+, phenol and dichlorophenol) reached 0.5 mg/L. Water toxicity determination is capable of resisting common interferences, e.g., glucose, lactate, nitrate and nitrite, and shows high accuracy in practical applications.
Collapse
Affiliation(s)
- Yuxuan Zang
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; International Joint Research Center of Aerospace Biotechnology and Medical Engineering, Beihang University, Beijing 100191, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Bo Cao
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; International Joint Research Center of Aerospace Biotechnology and Medical Engineering, Beihang University, Beijing 100191, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Hongyu Zhao
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; International Joint Research Center of Aerospace Biotechnology and Medical Engineering, Beihang University, Beijing 100191, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Beizhen Xie
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; International Joint Research Center of Aerospace Biotechnology and Medical Engineering, Beihang University, Beijing 100191, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Yanhong Ge
- Infore Environment Technology Group, Foshan 528000, Guangdong Province, China
| | - Yue Yi
- School of Life, Beijing Institute of Technology, 100081, China.
| | - Hong Liu
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; International Joint Research Center of Aerospace Biotechnology and Medical Engineering, Beihang University, Beijing 100191, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China.
| |
Collapse
|
4
|
Chen H, Meng X, Liu D, Wang W, Xing X, Zhang Z, Dong C. Closed-Loop Microbial Fuel Cell Control System Designed for Online Monitoring of TOC Dynamic Characteristics in Public Swimming Pool. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13024. [PMID: 36293614 PMCID: PMC9603446 DOI: 10.3390/ijerph192013024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Total organic carbon (TOC) in the water of public swimming pools (PSPs) must be monitored online for public health. In order to address the shortcomings of conventional microbial fuel cell biosensor (MFC-biosensor), an innovative biosensor with peculiar closed-loop structure was developed for online monitoring of TOC in PSPs. Its design was based on experimental data, model identification, cybernetics, and digital and real-time simulation. The outcomes of the digital simulation demonstrated that the closed-loop MFC control system possesses the desired structure with a pair of dominant complex-conjugate closed-loop poles (-15.47 ± 7.73j), and the real-time simulation showed that its controller output signals can automatically and precisely track the variation in TOC concentration in PSP water with the desired dynamic response performances; for example, mean delay time was 0.06 h, rise time was 0.12 h, peak time was 0.18 h, maximum overshoot was 7.39%, settling time was 0.22 h, and best fit 0.98. The proposed principle and method of the closed-loop MFC-biosensor control system in the article can also be applied for online monitoring of other substances in water, such as heavy metal ions, chemical toxicants, and so forth, and lay a theoretical foundation for MFC-based online monitoring substances in an aquatic environment.
Collapse
Affiliation(s)
- Haishan Chen
- Department of Health Service and Management, School of Sport Management, Shandong Sport University, Jinan 250102, China
| | - Xiaoping Meng
- Department of Health Service and Management, School of Sport Management, Shandong Sport University, Jinan 250102, China
| | - Dianlei Liu
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Wei Wang
- Human Science Center, Ludwig-Maximilians-Universität, 280539 Munich, Germany
| | - Xiaodong Xing
- Department of Health Service and Management, School of Sport Management, Shandong Sport University, Jinan 250102, China
| | - Zhiyong Zhang
- Department of Health Service and Management, School of Sport Management, Shandong Sport University, Jinan 250102, China
| | - Chen Dong
- Department of Health Service and Management, School of Sport Management, Shandong Sport University, Jinan 250102, China
| |
Collapse
|