1
|
Escudero-Cernuda S, Clases D, Eiro N, González LO, Fraile M, Vizoso FJ, Fernández-Sánchez ML, Gonzalez de Vega R. Quantitative distribution of essential elements and non-essential metals in breast cancer tissues by LA-ICP-TOF-MS. Anal Bioanal Chem 2024:10.1007/s00216-024-05652-8. [PMID: 39557687 DOI: 10.1007/s00216-024-05652-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/03/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024]
Abstract
Breast cancer (BC) is the leading cause of cancer death among women worldwide, making the discovery and quantification of new biomarkers essential for improving diagnostic and preventive strategies to limit dissemination and improve prognosis. Essential trace metals such as Fe, Cu, and Zn may play critical roles in the pathophysiology of both benign and malignant breast tumors. However, due to the high metabolic activity and reduced element selectivity of cancer cells, also non-essential elements may be taken up and may even be implicated with disease progression. This study investigates the spatial distribution and concentrations of both essential and non-essential elements in breast tissues, assessing their potential for diagnostic applications. Laser ablation (LA)-inductively coupled plasma-mass spectrometry (ICP-MS) with a time-of-flight (ToF) mass analyzer (LA-ICP-ToF-MS) was used to inquire the distribution of almost all elements across the periodic table and their abundance in metastatic (n = 11), non-metastatic (n = 7), and healthy (n = 4) breast tissues. Quantification was achieved using gelatine-based standards for external calibration to quantitatively map various elements. Overall, the Fe, Cu, Zn, Sr, and Ba levels were significantly increased in tumor samples with Sr and Ba showing strong correlation, likely due to their similar chemistry. Comparison of calibrated LA-ICP-ToF-MS data with a histologic staining demonstrated the possibility to clearly differentiate between various tissue types and structures in breast tissues such as tumor niche and stroma. The levels of the studied elements were significantly higher in the tumor niche areas compared to the stroma, and for Fe, a significant accumulation was observed in the tumor niche areas from the metastatic patient group relative to the levels found in the same areas of the non-metastatic group.
Collapse
Affiliation(s)
- Sara Escudero-Cernuda
- Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo, Spain
| | - David Clases
- Institute of Chemistry, University of Graz, Graz, Austria
| | - Noemi Eiro
- Research Unit, Jove Hospital Foundation, Gijón, Spain
| | | | - María Fraile
- Research Unit, Jove Hospital Foundation, Gijón, Spain
| | | | | | | |
Collapse
|
2
|
Saladino GM, Chao PH, Brodin B, Li SD, Hertz HM. Liposome biodistribution mapping with in vivo X-ray fluorescence imaging. NANOSCALE 2024; 16:17404-17411. [PMID: 39212620 DOI: 10.1039/d4nr02793k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Lipid-based nanoparticles are organic nanostructures constituted of phospholipids and cholesterol, displaying high in vivo biocompatibility. They have been demonstrated as effective nanocarriers for drug delivery and targeting. Mapping liposome distribution is crucial as it enables a precise understanding of delivery kinetics, tissue targeting efficiency, and potential off-target effects. Recently, ruthenium-encapsulated liposomes have shown potential for targeted drug delivery, photodynamic therapy, and optical fluorescence imaging. In the present work, we design Ru(bpy)3-encapsulated liposomes (Ru-Lipo) empowering optical and X-ray fluorescence (XRF) properties for dual mode imaging and demonstrate the passivation role of liposomes over the free Ru(bpy)3 compound. We employ whole-body XRF imaging to map the in vivo biodistribution of Ru-Lipo in mice, enabling tumor detection and longitudinal studies with elemental specificity and resolution down to the sub-millimeter scale. Quantitative XRF computed tomography on extracted organs permits targeting efficiency evaluations. These findings highlight the promising role of XRF imaging in pharmacokinetic studies and theranostic applications for the rapid optimization of drug delivery and assessment of targeting efficiency.
Collapse
Affiliation(s)
- Giovanni Marco Saladino
- Department of Applied Physics, Bio-Opto-Nano Physics, KTH Royal Institute of Technology, SE 10691, Stockholm, Sweden.
- Faculty of Pharmaceutical Sciences, University of British Columbia, V6T 1Z3, Vancouver, British Columbia, Canada
| | - Po-Han Chao
- Faculty of Pharmaceutical Sciences, University of British Columbia, V6T 1Z3, Vancouver, British Columbia, Canada
| | - Bertha Brodin
- Department of Applied Physics, Bio-Opto-Nano Physics, KTH Royal Institute of Technology, SE 10691, Stockholm, Sweden.
| | - Shyh-Dar Li
- Faculty of Pharmaceutical Sciences, University of British Columbia, V6T 1Z3, Vancouver, British Columbia, Canada
| | - Hans Martin Hertz
- Department of Applied Physics, Bio-Opto-Nano Physics, KTH Royal Institute of Technology, SE 10691, Stockholm, Sweden.
| |
Collapse
|
3
|
Billimoria K, Andresen E, Resch-Genger U, Goenaga-Infante H. A Strategy for Quantitative Imaging of Lanthanide Tags in A549 Cells Using the Ratio of Internal Standard Elements. Anal Chem 2024. [PMID: 39028702 DOI: 10.1021/acs.analchem.4c02763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
One remaining handicap for spatially resolved elemental quantification in biological samples is the lack of a suitable internal standard (IS) that can be reliably measured across both calibration standards and samples. In this work, multielement quantitative intracellular imaging of cells tagged with lanthanide nanoparticles containing key lanthanides, e.g., Eu and Ho, is described using a novel strategy that uses the ratio of IS elements and LA-ICP-TOFMS analysis. To achieve this, an internal standard layer is deposited onto microscope slides containing either gelatin calibration standards or Eu- and Ho-tagged cell samples. This IS layer contains both gallium (Ga) and indium (In). Monitoring either element as an IS individually showed significant variability in intensity signal between sample or standards prepared across multiple microscope slides, which is indicative of the difficulties in producing a homogeneous film at intracellular resolution. However, normalization of the lanthanide signal to the ratio of the IS elements improved the calibration correlation coefficients from 0.9885 to 0.9971 and 0.9805 to 0.9980 for Eu and Ho, respectively, while providing a consistent signal to monitor the ablation behavior between standards and samples. By analyzing an independent quality control (QC) gelatin sample spiked with Eu and Ho, it was observed that without normalization to the IS ratio the concentrations of Eu and Ho were highly biased by approximately 20% in comparison to the expected values. Similarly, this overestimation was also observed in the lanthanide concentration distribution of the cell samples in comparison with the normalized data.
Collapse
Affiliation(s)
- Kharmen Billimoria
- National Measurement Laboratory, LGC, Teddington, TW11 0LY, United Kingdom
| | - Elina Andresen
- Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin 12205, Germany
| | - Ute Resch-Genger
- Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin 12205, Germany
| | | |
Collapse
|
4
|
Petcov TE, Straticiuc M, Iancu D, Mirea DA, Trușcă R, Mereuță PE, Savu DI, Mogoșanu GD, Mogoantă L, Popescu RC, Kopatz V, Jinga SI. Unveiling Nanoparticles: Recent Approaches in Studying the Internalization Pattern of Iron Oxide Nanoparticles in Mono- and Multicellular Biological Structures. J Funct Biomater 2024; 15:169. [PMID: 38921542 PMCID: PMC11204647 DOI: 10.3390/jfb15060169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/15/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Nanoparticle (NP)-based solutions for oncotherapy promise an improved efficiency of the anticancer response, as well as higher comfort for the patient. The current advancements in cancer treatment based on nanotechnology exploit the ability of these systems to pass biological barriers to target the tumor cell, as well as tumor cell organelles. In particular, iron oxide NPs are being clinically employed in oncological management due to this ability. When designing an efficient anti-cancer therapy based on NPs, it is important to know and to modulate the phenomena which take place during the interaction of the NPs with the tumor cells, as well as the normal tissues. In this regard, our review is focused on highlighting different approaches to studying the internalization patterns of iron oxide NPs in simple and complex 2D and 3D in vitro cell models, as well as in living tissues, in order to investigate the functionality of an NP-based treatment.
Collapse
Affiliation(s)
- Teodora Eliana Petcov
- Department of Bioengineering and Biotechnology, Faculty of Medical Engineering, National University for Science and Technology Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (T.E.P.); (S.I.J.)
| | - Mihai Straticiuc
- Department of Applied Nuclear Physics, National Institute for R&D in Physics and Nuclear Engineering “Horia Hulubei”, 30 Reactorului Street, 077125 Magurele, Romania; (M.S.); (D.I.); (D.A.M.); (P.E.M.)
| | - Decebal Iancu
- Department of Applied Nuclear Physics, National Institute for R&D in Physics and Nuclear Engineering “Horia Hulubei”, 30 Reactorului Street, 077125 Magurele, Romania; (M.S.); (D.I.); (D.A.M.); (P.E.M.)
| | - Dragoș Alexandru Mirea
- Department of Applied Nuclear Physics, National Institute for R&D in Physics and Nuclear Engineering “Horia Hulubei”, 30 Reactorului Street, 077125 Magurele, Romania; (M.S.); (D.I.); (D.A.M.); (P.E.M.)
| | - Roxana Trușcă
- National Research Center for Micro and Nanomaterials, National University for Science and Technology Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania;
| | - Paul Emil Mereuță
- Department of Applied Nuclear Physics, National Institute for R&D in Physics and Nuclear Engineering “Horia Hulubei”, 30 Reactorului Street, 077125 Magurele, Romania; (M.S.); (D.I.); (D.A.M.); (P.E.M.)
| | - Diana Iulia Savu
- Department of Life and Environmental Physics, National Institute for R&D in Physics and Nuclear Engineering “Horia Hulubei”, 30 Reactorului Street, 077125 Magurele, Romania
| | - George Dan Mogoșanu
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareș Street, 200349 Craiova, Romania;
| | - Laurențiu Mogoantă
- Research Center for Microscopic Morphology and Immunology, University of Medicine and Pharmacy of Craiova, 2 Petru Rareș Street, 200349 Craiova, Romania;
| | - Roxana Cristina Popescu
- Department of Bioengineering and Biotechnology, Faculty of Medical Engineering, National University for Science and Technology Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (T.E.P.); (S.I.J.)
- Department of Life and Environmental Physics, National Institute for R&D in Physics and Nuclear Engineering “Horia Hulubei”, 30 Reactorului Street, 077125 Magurele, Romania
| | - Verena Kopatz
- Department of Radiation Oncology, Medical University of Vienna, 18–20 Waehringer Guertel Street, 1090 Vienna, Austria;
| | - Sorin Ion Jinga
- Department of Bioengineering and Biotechnology, Faculty of Medical Engineering, National University for Science and Technology Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (T.E.P.); (S.I.J.)
| |
Collapse
|
5
|
Neuper C, Šimić M, Lockwood TE, Gonzalez de Vega R, Hohenester U, Fitzek H, Schlatt L, Hill C, Clases D. Optofluidic Force Induction Meets Raman Spectroscopy and Inductively Coupled Plasma-Mass Spectrometry: A New Hyphenated Technique for Comprehensive and Complementary Characterizations of Single Particles. Anal Chem 2024; 96:8291-8299. [PMID: 38743800 PMCID: PMC11140667 DOI: 10.1021/acs.analchem.3c04657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024]
Abstract
Nanoparticles are produced at accelerating rates, are increasingly integrated into scientific and industrial applications, and are widely discharged into the environment. Analytical techniques are required to characterize parameters such as particle number concentrations, mass and size distributions, molecular and elemental compositions, and particle stability. This is not only relevant to investigate their utility for various industrial or medical applications and for controlling the manufacturing processes but also to assess toxicity and environmental fate. Different analytical strategies aim to characterize certain facets of particles but are difficult to combine to retrieve relevant parameters coherently and to provide a more comprehensive picture. In this work, we demonstrate the first online hyphenation of optofluidic force induction (OF2i) with Raman spectroscopy and inductively coupled plasma-time-of-flight-mass spectrometry (ICP-TOFMS) to harness their complementary technology-specific advantages and to promote comprehensive particle characterizations. We optically trapped individual particles on a weakly focused vortex laser beam by aligning a microfluidic flow antiparallelly to the laser propagation direction. The position of particles in this optical trap depended on the hydrodynamic diameter and therefore enabled size calibration as well as matrix elimination. Additionally, laser light scattered on particles was analyzed in a single particle (SP) Raman spectroscopy setup for the identification of particulate species and phases. Finally, particles were characterized regarding elemental composition and their distributions in mass and size using SP ICP-TOFMS. In a proof of concept, we analyzed polystyrene-based microplastic and TiO2 nanoparticles and demonstrated the opportunities provided through the coupling of OF2i with SP Raman and SP ICP-TOFMS.
Collapse
Affiliation(s)
- Christian Neuper
- Brave
Analytics GmbH, 8010 Graz, Austria
- Graz
Centre for Electron Microscopy, 8010 Graz, Austria
| | - Marko Šimić
- Brave
Analytics GmbH, 8010 Graz, Austria
- Gottfried
Schatz Research Center, Medical Physics and of Biophysics, Medical University of Graz, 8010 Graz, Austria
- Institute
of Physics, University of Graz, 8010 Graz, Austria
| | | | | | | | - Harald Fitzek
- Graz
Centre for Electron Microscopy, 8010 Graz, Austria
| | | | - Christian Hill
- Brave
Analytics GmbH, 8010 Graz, Austria
- Gottfried
Schatz Research Center, Medical Physics and of Biophysics, Medical University of Graz, 8010 Graz, Austria
| | - David Clases
- Institute
of Chemistry, University of Graz, 8010 Graz, Austria
| |
Collapse
|
6
|
Martínez-García J, Villa-Vázquez A, Fernández B, González-Iglesias H, Pereiro R. Exploring capabilities of elemental mass spectrometry for determination of metal and biomolecules in extracellular vesicles. Anal Bioanal Chem 2024; 416:2595-2604. [PMID: 37999724 PMCID: PMC11009778 DOI: 10.1007/s00216-023-05056-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023]
Abstract
Extracellular vesicles (EVs) are increasingly recognized as crucial components influencing various pathophysiological processes, such as cellular homeostasis, cancer progression, and neurological disease. However, the lack of standardized methods for EV isolation and classification, coupled with ambiguity in biochemical markers associated with EV subtypes, remains a major challenge. This Trends article highlights the most common approaches for EV isolation and characterization, along with recent applications of elemental mass spectrometry (MS) to analyse metals and biomolecules in EVs obtained from biofluids or in vitro cellular models. Considering the promising capabilities of elemental MS, the article also looks ahead to the potential analysis of EVs at the single-vesicle and single-cell levels using ICP-MS. These approaches may offer valuable insights into individual characteristics of EVs and their functions, contributing to a deeper understanding of their role in various biological processes.
Collapse
Affiliation(s)
- Jaime Martínez-García
- Department of Physical and Analytical Chemistry, University of Oviedo, Julian Clavería 8, 33006, Oviedo, Spain
| | - Alicia Villa-Vázquez
- Department of Physical and Analytical Chemistry, University of Oviedo, Julian Clavería 8, 33006, Oviedo, Spain
| | - Beatriz Fernández
- Department of Physical and Analytical Chemistry, University of Oviedo, Julian Clavería 8, 33006, Oviedo, Spain.
| | - Héctor González-Iglesias
- Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Villaviciosa, Spain
| | - Rosario Pereiro
- Department of Physical and Analytical Chemistry, University of Oviedo, Julian Clavería 8, 33006, Oviedo, Spain
| |
Collapse
|
7
|
Niehaus P, Gonzalez de Vega R, Haindl MT, Birkl C, Leoni M, Birkl-Toeglhofer AM, Haybaeck J, Ropele S, Seeba M, Goessler W, Karst U, Langkammer C, Clases D. Multimodal analytical tools for the molecular and elemental characterisation of lesions in brain tissue of multiple sclerosis patients. Talanta 2024; 270:125518. [PMID: 38128277 DOI: 10.1016/j.talanta.2023.125518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023]
Abstract
Multiple sclerosis (MS) is a prevalent immune-mediated inflammatory disease of the central nervous system inducing a widespread degradation of myelin and resulting in neurological deficits. Recent advances in molecular and atomic imaging provide the means to probe the microenvironment in affected brain tissues at an unprecedented level of detail and may provide new insights. This study showcases state-of-the-art spectroscopic and mass spectrometric techniques to compare distributions of molecular and atomic entities in MS lesions and surrounding brain tissues. MS brains underwent post-mortem magnetic resonance imaging (MRI) to locate and subsequently dissect MS lesions and surrounding white matter. Digests of lesions and unaffected white matter were analysed via ICP-MS/MS revealing significant differences in concentrations of Li, Mg, P, K, Mn, V, Rb, Ag, Gd and Bi. Micro x-ray fluorescence spectroscopy (μXRF) and laser ablation - inductively coupled plasma - time of flight - mass spectrometry (LA-ICP-ToF-MS) were used as micro-analytical imaging techniques to study distributions of both endogenous and xenobiotic elements. The essential trace elements Fe, Cu and Zn were subsequently calibrated using in-house manufactured gelatine standards. Lipid distributions were studied using IR-micro spectroscopy and matrix assisted laser desorption/ionisation mass spectrometry imaging (MALDI-MSI). MALDI-MSI was complemented with high-resolution tandem mass spectrometry and trapped ion mobility spectroscopy for the annotation of specified phospho- and sphingolipids, revealing specific lipid species decreased in MS lesions compared to surrounding white matter. This explorative study demonstrated that modern molecular and atomic mapping techniques provide high-resolution imaging for relevant bio-indicative entities which may complement our current understanding of the underlying pathophysiological processes.
Collapse
Affiliation(s)
- Peter Niehaus
- Institute of Inorganic and Analytical Chemistry, University of Münster, Germany
| | | | | | - Christoph Birkl
- Department of Radiology, Medical University of Innsbruck, Austria
| | - Marlene Leoni
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, Austria
| | - Anna Maria Birkl-Toeglhofer
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, Austria; Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Austria
| | - Johannes Haybaeck
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, Austria
| | - Stefan Ropele
- Department of Neurology, Medical University of Graz, Austria
| | | | | | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, Germany
| | | | - David Clases
- Institute of Chemistry, University of Graz, Austria.
| |
Collapse
|
8
|
Lu Y, Steiner R, Han S, Srivastava A, Shaik N, Chan M, Diallo A, Punshon T, Jackson B, Kolling F, Vahdat L, Vaickus L, Marotti J, Ho S, Levy J. Integrative Co-Registration of Elemental Imaging and Histopathology for Enhanced Spatial Multimodal Analysis of Tissue Sections through TRACE. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583819. [PMID: 38559138 PMCID: PMC10979873 DOI: 10.1101/2024.03.06.583819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Summary Elemental imaging provides detailed profiling of metal bioaccumulation, offering more precision than bulk analysis by targeting specific tissue areas. However, accurately identifying comparable tissue regions from elemental maps is challenging, requiring the integration of hematoxylin and eosin (H&E) slides for effective comparison. Facilitating the streamlined co-registration of Whole Slide Images (WSI) and elemental maps, TRACE enhances the analysis of tissue regions and elemental abundance in various pathological conditions. Through an interactive containerized web application, TRACE features real-time annotation editing, advanced statistical tools, and data export, supporting comprehensive spatial analysis. Notably, it allows for comparison of elemental abundances across annotated tissue structures and enables integration with other spatial data types through WSI co-registration. Availability and Implementation Available on the following platforms- GitHub: jlevy44/trace_app , PyPI: trace_app , Docker: joshualevy44/trace_app , Singularity: joshualevy44/trace_app . Contact joshua.levy@cshs.org. Supplementary information Supplementary data are available.
Collapse
|
9
|
Davison C, Beste D, Bailey M, Felipe-Sotelo M. Expanding the boundaries of atomic spectroscopy at the single-cell level: critical review of SP-ICP-MS, LIBS and LA-ICP-MS advances for the elemental analysis of tissues and single cells. Anal Bioanal Chem 2023; 415:6931-6950. [PMID: 37162524 PMCID: PMC10632293 DOI: 10.1007/s00216-023-04721-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/11/2023] [Accepted: 04/25/2023] [Indexed: 05/11/2023]
Abstract
Metals have a fundamental role in microbiology, and accurate methods are needed for their identification and quantification. The inability to assess cellular heterogeneity is considered an impediment to the successful treatment of different diseases. Unlike bulk approaches, single-cell analysis allows elemental heterogeneity across genetically identical populations to be related to specific biological events and to the effectiveness of drugs. Single particle-inductively coupled plasma-mass spectrometry (SP-ICP-MS) can analyse single cells in suspension and measure this heterogeneity. Here we explore advances in instrumental design, compare mass analysers and discuss key parameters requiring optimisation. This review has identified that the effect of pre-treatment of cell suspensions and cell fixation approaches require further study and novel validation methods are needed as using bulk measurements is unsatisfactory. SP-ICP-MS has the advantage that a large number of cells can be analysed; however, it does not provide spatial information. Techniques based on laser ablation (LA) enable elemental mapping at the single-cell level, such as laser-induced breakdown spectroscopy (LIBS) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). The sensitivity of commercial LIBS instruments restricts its use for sub-tissue applications; however, the capacity to analyse endogenous bulk components paired with developments in nano-LIBS technology shows great potential for cellular research. LA-ICP-MS offers high sensitivity for the direct analysis of single cells, but standardisation requires further development. The hyphenation of these trace elemental analysis techniques and their coupling with multi-omic technologies for single-cell analysis have enormous potential in answering fundamental biological questions.
Collapse
Affiliation(s)
- Claire Davison
- School of Chemistry and Chemical Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, UK
- Department of Microbial Science, Faculty ofHealth and Medical Sciences, University of Surrey, Guildford, UK
| | - Dany Beste
- Department of Microbial Science, Faculty ofHealth and Medical Sciences, University of Surrey, Guildford, UK
| | - Melanie Bailey
- School of Chemistry and Chemical Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, UK
| | - Mónica Felipe-Sotelo
- School of Chemistry and Chemical Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, UK.
| |
Collapse
|
10
|
Kuznetsova OV, Kolotilina NK, Dolgonosov AM, Khamizov RK, Timerbaev AR. A de novo nanoplatform for the delivery of metal-based drugs studied with high-resolution ICP-MS. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|