1
|
Liu Q, Wei W, Liu Y, Zhang Y, Chen W, Tang S. Deep eutectic supramolecular polymers based HPLC stationary phase: Green synthesis strategy and promising application prospects. Anal Chim Acta 2024; 1330:343268. [PMID: 39489951 DOI: 10.1016/j.aca.2024.343268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/29/2024] [Accepted: 09/19/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Deep eutectic solvents (DESs) have been widely and significantly applied in various fields due to their outstanding features such as low cost, easy preparation and good biodegradability. As novel derivatives of DESs, deep eutectic supramolecular polymers (DESPs) combine the macroscopic state of DESs with the covalent interactions of supramolecular polymers, which also possess the properties of DESs as multifunctional materials. Therefore, DESPs are believed to be promising candidates for separation science. However, there are no studies on the application of DESPs as stationary phases for HPLC analysis. RESULTS In this work, a novel DESP based HPLC stationary phase (Poly(DES)@SiO2) was developed for the first time through a green synthesis method by using DES as the polymerization monomer as well as the reaction medium. The results manifest that this novel Poly(DES)@SiO2 column can well interact with analytes through various mechanisms, and realize selective separation of a wide range of structurally similar hydrophilic/hydrophobic substances. More importantly, the separation of hydrophobic analytes on the Poly(DES)@SiO2 column is less time-consuming with fewer organic eluent, although the column efficiency is slightly lower than that of commercial C18 column. Furthermore, the Poly(DES)@SiO2 column exhibits excellent mechanical stability and satisfactory separation repeatability for steroid hormones. Therefore, a reliable method was established for detecting steroid hormones in actual samples with the recoveries ranging from 94.56 % to 103.84 %, which can meet the detection needs of commonly seen steroid hormones in food and the environment. SIGNIFICANCE In summary, this work provides some valuable theoretical references for the synthesis of new DESP based stationary phases through a green and facile strategy, and meanwhile, verifies the feasibility of DESP for effective HPLC separations. In addition, the promising application prospect of DESP based stationary phases in the analysis of complex samples has also been demonstrated, expanding the potential application of DES in separation science.
Collapse
Affiliation(s)
- Qiaoling Liu
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Wanjiao Wei
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Yanjuan Liu
- College of Medicine, Linyi University, Linyi, 276000, Shandong, China
| | - Yuefei Zhang
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Wei Chen
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Sheng Tang
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China.
| |
Collapse
|
2
|
Wu Y, Li Y, Li S, Ma Y, Ji W, Sun Y. The series of L-lysine-derived gelators-modified multifunctional chromatography stationary phase for separation of chiral and achiral compounds. J Chromatogr A 2024; 1733:465228. [PMID: 39163701 DOI: 10.1016/j.chroma.2024.465228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/22/2024]
Abstract
In this study, using chiral L-lysine as the molecular skeleton, three kinds of L-lysine-derived gelators (GBLB, GBLF and GFLF) were synthesized and then bonded to the surface of silica matrix (5 μm) by amide condensation to prepare a series of multifunctional chromatography stationary phases (GBLB-SiO2, GBLF-SiO2, and GFLF-SiO2) were prepared. The L-lysine-derived gelators not only possess chiral recognition ability, but also can spontaneously form oriented and ordered network structures in liquid medium through the interaction of non-covalent bonding forces such as hydrogen bonding, π-π stacking, and van der Waals forces. The comprehensive effect of multiple weak interaction sites enhances the molecular recognition ability and further improves the separation diversity of different types of compounds on stationary phases. The separation and evaluation of chiral compounds showed that benzoin, 1-phenyl-ethanol, 1-phenyl-propanol and 6-hydroxyflavanone could be separated in normal phase mode (NPLC). The separation of different types of non-chiral compounds, such as sulfonamides, nucleosides, nucleobases, polycyclic aromatic hydrocarbons (PAHs), anilines, and aromatic acids, were achieved in hydrophilic interaction/reversed-phase/ion-exchange mode (HILIC/RPLC/IEC), and the separation of polarized compounds could be performed under the condition of ultrapure water as the mobile phase, which has the typical retention characteristics of per aqueous liquid chromatography (PALC). The effects of organic solvent content, temperature, pH value, and buffer salt concentration on the retention and separation performance of the column were investigated. Comparison of the three prepared columns showed that the separation performance (such as aromatic selectivity) could be improved by increasing the types of functional groups on the surface of the stationary phase and the number of aromatic groups. In a word, the prepared stationary phase have multiple retention properties, can simultaneously separate chiral compounds and various types of achiral compounds. This work provides an idea for developing multifunctional liquid chromatography stationary phase materials, and further expands the application of gelators in separation science.
Collapse
Affiliation(s)
- Yongli Wu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Yuanyuan Li
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China.
| | - Shaorong Li
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Yulong Ma
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Wenxin Ji
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Yonggang Sun
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| |
Collapse
|
3
|
Ma L, Li Y, Shang L, Ma Y, Sun Y, Ji W. Preparation of two amphiphilic dendritic small molecule gelators based on poly (aryl ether) modified silica-based chromatographic stationary phases and molecular shape recognition for shape-restricted isomers. J Chromatogr A 2024; 1733:465249. [PMID: 39178658 DOI: 10.1016/j.chroma.2024.465249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024]
Abstract
Geometric isomers tend to have similar polarities and differ only in molecular shape. Vigorously developing new stationary phases to meet the requirements for the separation of isomers that have similar physicochemical properties is still an urgent topic in separation science. Poly (arylene ether)-based dendrimers are known for their multifunctional branched peripheral structures and high self-assembly properties. In this paper, two amphiphilic dendritic organic small molecule gelling agents based on poly (aryl ether), PAE-ANT and PAE-PA, were prepared and conjugated to the silica surface. SiO2@PAE-ANT and SiO2@PAE-PA were used as HPLC stationary phases for the separation of non-polar shape-restricted isomers. Both stationary phases have very high molecular shape selectivity for isomers such as polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), tocopherols and carotenoids. Separation of cis-trans geometric isomers such as diethylstilbestrol and polar compounds such as monosubstituted benzenes and anilines can also be achieved. These two columns offer more flexible selectivity and higher separation performance than commercial C18 and phenyl columns. There is a difference in molecular shape selectivity between the two stationary phases for the same analyte test probes. SiO2@PAE-ANT showed slightly better linear selectivity for non-polar shape-restricted isomers compared to SiO2@PAE-PA with Janus-type PAE-PA bonding phase. This separation behavior may be attributed to the ordered spatial structure formed by the gel factor on the surface of the stationary phase and the combined effect of multiple weak interaction centers (hydrophobic, hydrophilic, hydrogen bonding and π-π interactions). It was also possible to separate nucleoside and nucleobase strongly polar compounds well in the HILIC mode, suggesting that hydrophilic groups in PAE-ANT and PAE-PA are involved in the interactions, reflecting their amphiphilic nature. The results show that the ordered gelation of dendritic organic small molecule gelators on the SiO2 surface, along with multiple carbonyl-π, π-π and other interactions, play a crucial role in the separating shape-restricted isomers. The integrated and ordered functional groups serve as the primary driving force behind the exceptionally high molecular shape selectivity of SiO2@PAE-ANT and SiO2@PAE-PA phases. Alterations in the structure of dendritic organic small molecule gelators can impact both molecular orientation and recognition ability, while changes in the type of functional groups influences the separation mechanism of shape-restricted isomers.
Collapse
Affiliation(s)
- Lan Ma
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yuanyuan Li
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Le Shang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yulong Ma
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yonggang Sun
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Wenxin Ji
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
4
|
Zhao Q, Zhao L, Zhang Y, Chen W, Tang S. Design of smart temperature-sensitive terpolymeric hydrogel for multi-applications in liquid chromatography. J Chromatogr A 2024; 1722:464867. [PMID: 38598895 DOI: 10.1016/j.chroma.2024.464867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Hydrogels with a unique three-dimensional network structure have been widely used in a variety of fields. However, hydrogels are prone to swelling under water-rich conditions, which severely limits their application in liquid chromatography. Therefore, producing a hydrogel with reliable performance and good mechanical property is essential. Smart temperature-sensitive chromatographic packings have attracted extensive attentions in recent years. In this work, sodium 4-styrenesulfonate and 1-octadecene were introduced into the poly(N-isopropylacrylamide) hydrogel to improve mechanical property and separation performance. As a consequence, a smart temperature-sensitive terpolymeric hydrogel modified silica stationary phase (ION-hydrogel@SiO2) was synthesized for multimode liquid chromatographic separation. It was found that this new ION-hydrogel@SiO2 column exhibited excellent chromatographic separation ability for a wide range of analytes. To a certain extent, this new column has a higher chromatographic separation efficiency compared to the commercial C18 column and XAmide column. Moreover, the use of low proportion of organic phase in chromatographic separation is conducive to the realization of green chromatography. By investigating the chromatographic separation mechanism, it has been demonstrated that the hydrogen bonding interaction is primarily responsible for the temperature-sensitive behavior of the hydrogel. Finally, the ION-hydrogel@SiO2 column was used for the determination of pyridoxine in the commercially available tablet samples. In conclusion, this study presents a feasible idea for the development of novel copolymer hydrogels as liquid chromatographic stationary phases.
Collapse
Affiliation(s)
- Qian Zhao
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - Lulu Zhao
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yuefei Zhang
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - Wei Chen
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - Sheng Tang
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China.
| |
Collapse
|
5
|
Li Y, Li S, Wu Y, Ma Y, Ji W, Sun Y, Shi K. Immobilization of two dendritic organic phases onto silica and their molecular shape recognition for polycyclic aromatic hydrocarbons, tocopherols and carotenoid isomers. Anal Chim Acta 2024; 1288:342156. [PMID: 38220288 DOI: 10.1016/j.aca.2023.342156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/06/2023] [Accepted: 12/16/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND Molecular shape selectivity, based on the size and shape parameters of the molecule, such as length and planarity, is a separation process that can be used for compounds with restricted shapes, such as isomers. The separation of geometric isomers is challenging because these compounds have similar physicochemical properties but differ slightly in molecular shape. The ability to separate and quantify these isomers is important in high performance liquid chromatography (HPLC), which is one of the most widely used techniques in separation science today, because the shape of the molecule has a strong influence on biological processes. RESULTS We prepared symmetrical discoidal dendrimeric organomolecule gelators (GSDM) and o-phenylenediamine-derived low-molecular-weight dendrimeric organomolecule gelators (G1) and bonded them to silica surfaces. The dendritic organic compound-grafted silica (SiO2@GSDM and SiO2@G1) was used as HPLC stationary phases for the separation of shape-restricted isomers of polycyclic aromatic hydrocarbons (PAHs), carotenoids and tocopherols. The two phases exhibit a very high molecular shape selectivity compared to the commercially available alkyl phases. There are differences in molecular shape selectivity between the two stationary phases. Changes in the chemical structure of dendritic organic compounds can alter the orientation of the molecules, as well as changes in the molecular recognition ability. It was found that SiO2@GSDM has high molecular linear selectivity for PAHs at different temperatures, even at 50 °C. The planar selectivity of SiO2@GSDM was better for triphenylene and o-terphenyl benzenes compared to SiO2@G1. SIGNIFICANCE This separation behavior may be attributed to the combined effect of weak interaction centers, which allowed the effective separation of bioactive and shape-restricted isomers through multiple interactions. Furthermore, SiO2@GSDM showed better separation of tocopherols and carotenoids, suggesting that the backbone and ordered structure of organic molecular gelators is an effective way to improve the shape selectivity of the molecules, whereas the molecular orientation of the functional groups influences the separation mechanism of the shape-restricted isomers.
Collapse
Affiliation(s)
- Yuanyuan Li
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China; College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China.
| | - Shaorong Li
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China; College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Yongli Wu
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China; College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Yulong Ma
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China; College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Wenxin Ji
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China; College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Yonggang Sun
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China; College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Keren Shi
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China; College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| |
Collapse
|