1
|
Webb IK. Revealing the Fates of Proteins in the Gas Phase. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2024; 504:117312. [PMID: 39184132 PMCID: PMC11340257 DOI: 10.1016/j.ijms.2024.117312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
The ability to observe intact proteins by native mass spectrometry allows measurements of size, oligomeric state, numbers and types of ligands and post translational modifications bound, among many other characteristics. These studies have the potential to, and in some cases are, advancing our understanding of the role of structure in protein biology and biochemistry. However, there are some long-unresolved questions about to what extent solution-like structures persist without solvent in the vacuum of the mass spectrometer. Strong evidence from multiple sources over the years has demonstrated that well-folded proteins maintain native-like states if care is taken during sample preparation, ionization, and transmission through the gas phase. For partially unfolded states, dynamic and disordered proteins, and other important landmarks along the protein folding/unfolding pathway, caution has been urged in the interpretation of the results of native ion mobility/mass spectrometric data. New gas-phase tools allow us to provide insight into these questions with in situ, in vacuo labeling reactions delivered through ion/ion chemistry. This Young Scientist Perspective demonstrates the robustness of these tools in describing native-like structure as well as possible deviations from native-like structure during native ion mobility/mass spectrometry. This Perspective illustrates some of the changes in structure produced by the removal of solvent and details some of the challenges and potential of the field.
Collapse
Affiliation(s)
- Ian K Webb
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, Indianapolis, IN 46202
| |
Collapse
|
2
|
Chen FH, Cheng CY, Chou SW, Yang CH, Lu IC, Yeh ML. High-Resolution Intact Protein Analysis via Phase-Modulated, Stepwise Frequency Scan Ion Trap Mass Spectrometry. Anal Chem 2024; 96:14867-14876. [PMID: 39238447 PMCID: PMC11411492 DOI: 10.1021/acs.analchem.4c02775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Mass spectrometry (MS) using an electron multiplier for intact protein analysis remains limited. Because of the massive size and complex structure of proteins, the slow flight speed of their ions results in few secondary electrons and thus low detection sensitivity and poor spectral resolution. Thus, we present a compact ion trap-mass spectrometry approach to directly detect ion packets and obtain the high-resolution molecular signature of proteins. The disturbances causing deviations of ion motion and mass conversion have been clarified in advance. The radio frequency waveform used to manipulate ions is proposed to be a sequence of constant-frequency steps, interconnected by short time-outs, resulting in least dispersive distortion. Furthermore, more such constant-phase conjunctions are arranged in each step to compensate for fluctuations resulting from defects in the system and operation. In addition, two auxiliary pulses are generated in the right phase of each step to select ions of a specific secular state to detect one clean and sharp spectral line.This study demonstrates a top-down approach for the MS measurement of cytochrome C molecules, resulting in a spectral profile of the protein in its natural state at a resolution of 20 Da. Additionally, quick MS scans of other proteins were performed.
Collapse
Affiliation(s)
- Fang-Hsu Chen
- Department of Biomedical Engineering, National Cheng Kung University, Tainan City 701, Taiwan
| | - Chun-Yen Cheng
- Department of Biomedical Engineering, National Cheng Kung University, Tainan City 701, Taiwan
- AcroMass Technologies Inc., Hukou, Hsinchu 30352, Taiwan
| | - Szu-Wei Chou
- AcroMass Technologies Inc., Hukou, Hsinchu 30352, Taiwan
| | - Cheng-Han Yang
- Department of Chemistry, National Chung Hsing University, Taichung City 40227, Taiwan
| | - I-Chung Lu
- Department of Chemistry, National Chung Hsing University, Taichung City 40227, Taiwan
| | - Ming-Long Yeh
- Department of Biomedical Engineering, National Cheng Kung University, Tainan City 701, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan City, 701, Taiwan
| |
Collapse
|
3
|
Le Huray KI, Wörner TP, Moreira T, Dembek M, Reinhardt-Szyba M, Devine PWA, Bond NJ, Fort KL, Makarov AA, Sobott F. To 200,000 m/ z and Beyond: Native Electron Capture Charge Reduction Mass Spectrometry Deconvolves Heterogeneous Signals in Large Biopharmaceutical Analytes. ACS CENTRAL SCIENCE 2024; 10:1548-1561. [PMID: 39220705 PMCID: PMC11363327 DOI: 10.1021/acscentsci.4c00462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 09/04/2024]
Abstract
Great progress has been made in the detection of large biomolecular analytes by native mass spectrometry; however, characterizing highly heterogeneous samples remains challenging due to the presence of many overlapping signals from complex ion distributions. Electron-capture charge reduction (ECCR), in which a protein cation captures free electrons without apparent dissociation, can separate overlapping signals by shifting the ions to lower charge states. The concomitant shift to higher m/z also facilitates the exploration of instrument upper m/z limits if large complexes are used. Here we perform native ECCR on the bacterial chaperonin GroEL and megadalton scale adeno-associated virus (AAV) capsid assemblies on a Q Exactive UHMR mass spectrometer. Charge reduction of AAV8 capsids by up to 90% pushes signals well above 100,000 m/z and enables charge state resolution and mean mass determination of these highly heterogeneous samples, even for capsids loaded with genetic cargo. With minor instrument modifications, the UHMR instrument can detect charge-reduced ion signals beyond 200,000 m/z. This work demonstrates the utility of ECCR for deconvolving heterogeneous signals in native mass spectrometry and presents the highest m/z signals ever recorded on an Orbitrap instrument, opening up the use of Orbitrap native mass spectrometry for heavier analytes than ever before.
Collapse
Affiliation(s)
- Kyle I.
P. Le Huray
- Astbury
Centre for Structural Molecular Biology, School of Molecular and Cellular
Biology, Faculty of Biological Sciences, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Tobias P. Wörner
- Thermo
Fisher Scientific (Bremen) GmbH, Hanna-Kunath Str. 11, 28199 Bremen, Germany
| | - Tiago Moreira
- Astbury
Centre for Structural Molecular Biology, School of Molecular and Cellular
Biology, Faculty of Biological Sciences, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Marcin Dembek
- Purification
Process Sciences, Biopharmaceutical Development, Biopharmaceuticals
R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K.
| | | | - Paul W. A. Devine
- Analytical
Sciences, Biopharmaceutical Development, Biopharmaceuticals R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K.
| | - Nicholas J. Bond
- Analytical
Sciences, Biopharmaceutical Development, Biopharmaceuticals R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K.
| | - Kyle L. Fort
- Thermo
Fisher Scientific (Bremen) GmbH, Hanna-Kunath Str. 11, 28199 Bremen, Germany
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Alexander A. Makarov
- Thermo
Fisher Scientific (Bremen) GmbH, Hanna-Kunath Str. 11, 28199 Bremen, Germany
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Frank Sobott
- Astbury
Centre for Structural Molecular Biology, School of Molecular and Cellular
Biology, Faculty of Biological Sciences, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| |
Collapse
|
4
|
Luo P, Liu Z, Lai C, Jin Z, Wang M, Zhao H, Liu Y, Zhang W, Wang X, Xiao C, Yang X, Wang F. Time-Resolved Ultraviolet Photodissociation Mass Spectrometry Probes the Mutation-Induced Alterations in Protein Stability and Unfolding Dynamics. J Am Chem Soc 2024; 146:8832-8838. [PMID: 38507251 DOI: 10.1021/jacs.4c00316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
How mutations impact protein stability and structure dynamics is crucial for understanding the pathological process and rational drug design. Herein, we establish a time-resolved native mass spectrometry (TR-nMS) platform via a rapid-mixing capillary apparatus for monitoring the acid-initiated protein unfolding process. The molecular details in protein structure unfolding are further profiled by a 193 nm ultraviolet photodissociation (UVPD) analysis of the structure-informative photofragments. Compared with the wild-type dihydrofolate reductase (WT-DHFR), the M42T/H114R mutant (MT-DHFR) exhibits a significant stability decrease in TR-nMS characterization. UVPD comparisons of the unfolding intermediates and original DHFR forms indicate the special stabilization effect of cofactor NADPH on DHFR structure, and the M42T/H114R mutations lead to a significant decrease in NADPH-DHFR interactions, thus promoting the structure unfolding. Our study paves the way for probing the mutation-induced subtle changes in the stability and structure dynamics of drug targets.
Collapse
Affiliation(s)
- Pan Luo
- Institute of Advanced Science Facilities, Shenzhen 518107, China
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Zheyi Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Can Lai
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhixiong Jin
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Mengdie Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heng Zhao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yu Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Weiqing Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xingan Wang
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Chunlei Xiao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xueming Yang
- Institute of Advanced Science Facilities, Shenzhen 518107, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Fangjun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Javanshad R, Panth R, Venter AR. Effects of Amino Acid Additives on Protein Stability during Electrothermal Supercharging in ESI-MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:151-157. [PMID: 38078777 DOI: 10.1021/jasms.3c00377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The surprising formation of highly charged protein ions from aqueous ammonium bicarbonate solution is a fascinating phenomenon referred to as electrothermal supercharging (ETS). Although the precise mechanism involved is not clearly understood, previous studies predominantly suggest that ETS is due to native protein destabilization in the presence of bicarbonate anion inside the electrospray ionization droplets under high temperatures and spray voltages. To evaluate existing hypotheses surrounding the underlying mechanism of ETS, the effects of several additives on protein charging under ETS conditions were investigated. The changes in the protein charge state distributions were compared by measuring the ratios between the intensities of highest intensity charge states of native and unfolded protein envelopes and shifts in the lowest and highest observed charge states. This study demonstrated that source temperature plays a more important role in ETS compared to spray voltage, especially when using a nebulized microelectrospray ionization source. Moreover, the effect of amino acids on ETS were generally in good agreement with the extensive literature available on the stabilization or destabilization of proteins by these additives in bulk solution. Among the natural amino acids, protein supercharging was significantly reduced by proline and glycine; however, imidazole provided the highest degree of noncovalent complex stabilization against ETS, outperforming the amino acids. Overall, our study shows that the simple addition of stabilizing reagents such as proline and imidazole can reduce the extent of apparent protein unfolding and supercharging in ammonium bicarbonate solution and provide evidence against the roles of charge depletion and thermal unfolding during ETS.
Collapse
Affiliation(s)
- Roshan Javanshad
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008-5413, United States
| | - Rajendra Panth
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008-5413, United States
| | - Andre R Venter
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008-5413, United States
| |
Collapse
|
6
|
Lantz C, Schrader R, Meeuwsen J, Shaw J, Goldberg NT, Tichy S, Beckman J, Russell DH. Digital Quadrupole Isolation and Electron Capture Dissociation on an Extended Mass Range Q-TOF Provides Sequence and Structure Information on Proteins and Protein Complexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1753-1760. [PMID: 37463113 PMCID: PMC10496594 DOI: 10.1021/jasms.3c00184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023]
Abstract
Electron capture dissociation (ECD) is now a well-established method for sequencing peptides and performing top-down analysis on proteins of less than 30 kDa, and there is growing interest in using this approach for studies of larger proteins and protein complexes. Although much progress on ECD has been made over the past few decades, establishing methods for obtaining informative spectra still poses a significant challenge. Here we describe how digital quadrupole (DigiQ) ion isolation can be used for the mass selection of single charge states of proteins and protein complexes prior to undergoing ECD and/or charge reduction. First, we demonstrate that the DigiQ can isolate single charge states of monomeric proteins such as ubiquitin (8.6 kDa) and charge states of large protein complexes such as pyruvate kinase (234 kDa) using a hybrid quadrupole-TOF-MS (Agilent extended m/z range 6545XT). Next, we demonstrate that fragment ions resulting from ECD can be utilized to provide information about the sequence and structure of the cytochrome c/heme complex and the ubiquitin monomer. Lastly, an especially interesting result for DigiQ isolation and electron capture (EC) was noted; namely, the 16+ charge state of the streptavidin/biotin complex reveals different electron capture patterns for the biotinylated proteoforms of streptavidin. This result is consistent with previous reports that apo streptavidin exists in multiple conformations and that biotin binding shifts the conformational dynamics of the complex (Quintyn, R. Chem. Biol. 2015, 22 (55), 583-592).
Collapse
Affiliation(s)
- Carter Lantz
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Robert Schrader
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Joseph Meeuwsen
- e-MSion,
a part of Agilent, 2121
NE Jack London St, Ste 140, Corvallis, Oregon 97330, United States
| | - Jared Shaw
- e-MSion,
a part of Agilent, 2121
NE Jack London St, Ste 140, Corvallis, Oregon 97330, United States
| | - Noah T. Goldberg
- Agilent
Technologies, 5301 Stevens Creek Blvd, Santa Clara, California 95051, United States
| | - Shane Tichy
- Agilent
Technologies, 5301 Stevens Creek Blvd, Santa Clara, California 95051, United States
| | - Joe Beckman
- e-MSion,
a part of Agilent, 2121
NE Jack London St, Ste 140, Corvallis, Oregon 97330, United States
| | - David H. Russell
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
7
|
Suarez C, Premasiri WR, Ingraham H, Brodeur AN, Ziegler LD. Ultra-sensitive, rapid detection of dried bloodstains by surface enhanced Raman scattering on Ag substrates. Talanta 2023; 259:124535. [PMID: 37054622 DOI: 10.1016/j.talanta.2023.124535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 04/15/2023]
Abstract
A simple water extraction and transfer procedure is found to result in reproducible and highly sensitive 785 nm excited SERS spectra of 24 h dried bloodstains on Ag nanoparticle substrates. This protocol allows confirmatory detection and identification of dried stains of blood that have been diluted by up to 105 in water on Ag substrates. While previous SERS results demonstrated similar performance on Au substrates when a 50% acetic acid extraction and transfer procedure was used, the water/Ag methodology avoids any potential DNA damage when the sample size is extremely small (≤∼1 μL) due to low pH exposure. The water only procedure is not effective on Au SERS substrates. This metal substrate difference results from the efficient red blood cell lysis and hemoglobin denaturation effects of the Ag nanoparticle surfaces as compare to that of Au nanoparticles. Consequently, the 50% acetic acid exposure is required for the acquisition of 785 nm SERS spectra of dried bloodstains on Au substrates.
Collapse
Affiliation(s)
- C Suarez
- Department of Chemistry, 590 Commonwealth Ave., Boston University, Boston, MA, 02215, USA
| | - W R Premasiri
- Department of Chemistry, 590 Commonwealth Ave., Boston University, Boston, MA, 02215, USA; Photonics Center, 15 Saint Mary's St., Boston University, Boston, MA, 02215, USA
| | - H Ingraham
- Department of Chemistry, 590 Commonwealth Ave., Boston University, Boston, MA, 02215, USA; Photonics Center, 15 Saint Mary's St., Boston University, Boston, MA, 02215, USA
| | - A N Brodeur
- Program in Biomedical Forensic Sciences, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA.
| | - L D Ziegler
- Department of Chemistry, 590 Commonwealth Ave., Boston University, Boston, MA, 02215, USA; Photonics Center, 15 Saint Mary's St., Boston University, Boston, MA, 02215, USA.
| |
Collapse
|