1
|
Ciotola E, Sottorff I, Koch K, Cesaro A, Esposito G. Assessment of trace organic chemicals in anaerobically digested sludge and their partitioning behaviour: Simultaneous Soxhlet chemical extraction and quantification via LC-MS/MS analysis. WATER RESEARCH 2024; 268:122780. [PMID: 39556983 DOI: 10.1016/j.watres.2024.122780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/08/2024] [Accepted: 11/09/2024] [Indexed: 11/20/2024]
Abstract
The increasing number of trace organic contaminants (TrOCs) detected in anaerobically digested sludge (ADS) is triggering increasing concern on its circular-economy reuse practices. A large scientific effort has been performed to define their concentration limits, partition behaviour, and innovative technologies for their removal, which require the definition of versatile and economically sustainable analytical methodologies. In this study, a Soxhlet extraction method coupled with LC-MS/MS analysis was developed to simultaneously determine 32 TrOCs in ADS, 11 of them being quantified in this matrix for the first time. The targeted TrOCs were selected based on the European Urban Wastewater Treatment Directive, and on their frequency of detection in municipal wastewater and/or sludge and chemical diversity. The use of methanol as solvent allowed good recovery efficiencies from ADS solid phase, with an extraction time of 3.5 h and without the need for subsequent clean-up procedures. The targeted LC-MS/MS method enabled high-sensitivity quantification of TrOCs in the liquid phase. At least 25 out of the 32 target compounds were detected in ADS samples from two wastewater treatment plants in Germany, providing their concentration data and highlighting the influence of TrOCs characteristics and sludge properties on contaminant partition coefficients (KD). The experimental outcomes highlight the versatility of the Soxhlet method, which is effective in extracting compounds characterized by diverse properties and structures, and opens new perspectives for the analysis of various substrates. This could support the European Sewage Sludge Directive, expanding its application to soils and cultivated foods and offering insights into TrOCs transfer among different substrates and their influence when used as fertilizer, aiding in the efficient definition of risk assessment methodologies and regulatory concentration limits.
Collapse
Affiliation(s)
- Enrica Ciotola
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, via Claudio 21, 80125, Napoli, Italy.
| | - Ignacio Sottorff
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748 Garching, Germany; Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115, Bonn, Germany.
| | - Konrad Koch
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748 Garching, Germany.
| | - Alessandra Cesaro
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, via Claudio 21, 80125, Napoli, Italy.
| | - Giovanni Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, via Claudio 21, 80125, Napoli, Italy.
| |
Collapse
|
2
|
Mejías C, Martín-Pozo L, Santos JL, Martín J, Aparicio I, Alonso E. Occurrence, dissipation kinetics and environmental risk assessment of antibiotics and their metabolites in agricultural soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135586. [PMID: 39191017 DOI: 10.1016/j.jhazmat.2024.135586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
Antibiotics are among the emerging contaminants of greatest concern to the scientific community. However, the occurrence and behaviour of their metabolites in soils have been scarcely studied. To address this research gap, this study investigates the occurrence, sorption, dissipation kinetics, and environmental risk of highly important antibiotics (sulfamethazine, sulfadiazine, sulfamethoxazole, trimethoprim) and their main metabolites in Mediterranean agricultural soils. Batch experiments were conducted under natural conditions for 120 days. Five different dissipation kinetics models were applied to elucidate antibiotics degradation. The sorption isotherms were evaluated by three different models. Most of the antibiotics and metabolites tested showed a good fit with the Linear Isotherm model (R2 >0.96) and biphasic dissipation kinetic models (R2 >0.90). The dissipation and the endpoints values (DT50 and DT90) depended on the soil type properties. A Lixisol soil demonstrated reduced degradation of the investigated compounds. Trimethoprim showed the highest persistence, followed by sulfamethazine, sulfamethoxazole, and sulfadiazine. Parent compounds exhibited lower degradation rates than their metabolites. Remaining antibiotic concentrations were found to be below the predicted no-effect concentration in soil, suggesting that they may not pose a risk to terrestrial biota. This study provides valuable insights into the behaviour of these antibiotics and their metabolites in soil.
Collapse
Affiliation(s)
- Carmen Mejías
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África, 7, E-41011 Seville, Spain
| | - Laura Martín-Pozo
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África, 7, E-41011 Seville, Spain
| | - Juan Luis Santos
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África, 7, E-41011 Seville, Spain.
| | - Julia Martín
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África, 7, E-41011 Seville, Spain
| | - Irene Aparicio
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África, 7, E-41011 Seville, Spain
| | - Esteban Alonso
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/ Virgen de África, 7, E-41011 Seville, Spain
| |
Collapse
|
3
|
Yuan J, Liu C, Jiang H, Zhou Z, Xie M, Sun Y. Rapid and Simultaneous Determination of 13 Sulfonamides in Soil by Matrix Solid-Phase Dispersion With High-Performance Liquid Chromatography-Tandem Mass Spectrometry. J Sep Sci 2024; 47:e70015. [PMID: 39503442 DOI: 10.1002/jssc.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024]
Abstract
Sulfonamides, the most frequent antibacterial agent, are widely used due to their low cost and excellent antibacterial effect. With the emergence of the environment, the potential hazard to the ecological environment has attracted the great attention of humans. Based on matrix solid-phase dispersion coupled with high-performance liquid chromatography-tandem mass spectrometry, an accurate, fast, and sensitive analytical method was developed for the determination of sulfonamides (SAs) in soil. Several influencing factors including the type of dispersants, the ratio of sample-to-sorbent, eluents, and solvent volume were investigated, and the matrix effects were evaluated. Under optimized conditions, the calibration curves exhibited excellent linearity with correlation coefficients (r) exceeding 0.996. The limit of detection (based on signal-to-noise ratio [S/N] = 3) and limit of quantification (based on S/N = 10) were 0.024-0.058 and 0.079-0.195 µg/kg, respectively. The recoveries ranging from 70.12% to 123.63% were obtained with a relative standard deviation of less than 15% at three levels (20, 40, and 200 µg/kg). The developed method was successfully applied to analyze 13 SAs at trace levels in a real soil sample. This proposed method would be an alternative and suitable for routine application in the future owing to its rapidity, sensitivity, and affordability.
Collapse
Affiliation(s)
- JinPeng Yuan
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, China
| | - Chen Liu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - HaiLong Jiang
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, China
| | - ZhaoTing Zhou
- Department of Food Test, Yantai Food and Drug Inspection and Testing Center, Yantai, China
| | - Meng Xie
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan, China
| | - YouMin Sun
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| |
Collapse
|
4
|
Shafiq M, Obinwanne Okoye C, Nazar M, Ali Khattak W, Algammal AM. Ecological consequences of antimicrobial residues and bioactive chemicals on antimicrobial resistance in agroecosystems. J Adv Res 2024:S2090-1232(24)00467-3. [PMID: 39414225 DOI: 10.1016/j.jare.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/30/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND The widespread use of antimicrobials in agriculture, coupled with bioactive chemicals like pesticides and growth-promoting agents, has accelerated the global crisis of antimicrobial resistance (AMR). Agroecosystems provides a platform in the evolution and dissemination of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs), which pose significant threats to both environmental and public health. AIM OF REVIEW This review explores the ecological consequences of antimicrobial residues and bioactive chemicals in agroecosystems, with a focus on their role in shaping AMR. It delves into the mechanisms by which these substances enter agricultural environments, their interactions with soil microbiomes, and the subsequent impacts on microbial community structure. KEY SCIENTIFIC CONCEPTS OF REVIEW Evidence indicates that the accumulation of antimicrobials promotes resistance gene transfer among microorganisms, potentially compromising ecosystem health and agricultural productivity. By synthesizing current research, we identify critical gaps in knowledge and propose strategies for mitigating the ecological risks associated with antimicrobial residues. Moreover, this review highlights the urgent need for integrated management approaches to preserve ecosystem health and combat the spread of AMR in agricultural settings.
Collapse
Affiliation(s)
- Muhammad Shafiq
- Research Institute of Clinical Pharmacy, Department of Pharmacology, Shantou University Medical College, Shantou 515041, China.
| | - Charles Obinwanne Okoye
- Biofuels Institute, School of Environment & Safety Engineering, Jiangsu University, Zhenjiang 212013, China; School of Life Sciences, Jiangsu University, Zhenjiang 212013, China; Department of Zoology & Environmental Biology, University of Nigeria, Nsukka 410001, Nigeria
| | - Mudasir Nazar
- Institute of Animal Science, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
| | - Wajid Ali Khattak
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Abdelazeem M Algammal
- Department of Bacteriology, Immunology, and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| |
Collapse
|
5
|
Akhter S, Bhat MA, Ahmed S, Siddiqui WA. Antibiotic residue contamination in the aquatic environment, sources and associated potential health risks. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:387. [PMID: 39167284 DOI: 10.1007/s10653-024-02146-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024]
Abstract
Antibiotic residues are widely recognized as major pollutants in the aquatic environment on a global scale. As a significant class of pharmaceutically active compounds (PhACs), antibiotics are extensively consumed worldwide. The primary sources of these residues include hospitals, municipal sewage, household disposal, and manures from animal husbandry. These residues are frequently detected in surface and drinking waters, sewage effluents, soils, sediments, and various plant species in countries such as China, Japan, South Korea, Europe, the USA, Canada, and India. Antibiotics are used medicinally in both humans and animals, with a substantial portion excreted into the environment as metabolites in feces and urine. With the advancement of sensitive and quantitative analytical techniques, antibiotics are consistently reported in environmental matrices at concentrations ranging from nanograms per liter (ng/L) to milligrams per liter (mg/L). Agricultural soils, in particular, serve as a significant reservoir for antibiotic residues due to their strong particle adsorption capacities. Plants grown in soils irrigated with PhAC-contaminated water can uptake and accumulate these pharmaceuticals in various tissues, such as roots, leaves, and fruits, raising serious concerns regarding their consumption by humans and animals. There is an increasing need for research to understand the potential human health risks associated with the accumulation of antibiotics in the food chain. The present reviews aims to shed light on the rising environmental pharmaceutical contamination concerns, their sources in the environment, and the potential health risks as well as remediation effort. To discuss the main knowledge gaps and the future research that should be prioritized to achieve the risk assessment. We examined and summarized the available data and information on the antibiotic resistance associated with antibiotic residues in the environment. As studies have indicated that vegetables can absorb, transport, and accumulate antibiotics in edible parts when irrigated with wastewater that is either inadequately treated or untreated. These residues and their metabolites can enter the food chain, with their persistence, bioaccumulation, and toxicity contributing to drug resistance and adverse health effects in living organisms.
Collapse
Affiliation(s)
- Suriyah Akhter
- Department Environmental Science, Jamia Millia Islamia, New Delhi, 110025, India
| | - Mohd Aadil Bhat
- State Key Laboratory of Marine Geology, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| | - Sirajuddin Ahmed
- Department Environmental Science, Jamia Millia Islamia, New Delhi, 110025, India
| | - Weqar Ahmed Siddiqui
- Department of Applied Science and Humanities Jamia Millia Islamia, New Delhi, 110025, India
| |
Collapse
|
6
|
Massaccesi L, Albini E, Massacci FR, Giusepponi D, Paoletti F, Sdogati S, Morena F, Agnelli A, Leccese A, Magistrali CF, Galarini R. Impact of Soil Fertilization with Pig Slurry on Antibiotic Residues and Resistance Genes: A Longitudinal Study. Antibiotics (Basel) 2024; 13:486. [PMID: 38927154 PMCID: PMC11200711 DOI: 10.3390/antibiotics13060486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
The impact of soil fertilization with animal manure on the spread and persistence of antibiotic resistance in the environment is far from being fully understood. To add knowledge about persistence and correlations between antibiotic residues and antibiotic resistance genes (ARGs) in fertilized soil, a longitudinal soil mesocosm study was conducted. Soil samples were collected from the mesocosms immediately before spreading and then afterward at fifteen time points during a 320-day observation period. Eight ARGs (ermB, sul1, tetA, tetG, tetM, cfr, fexA, and optrA) and the class 1 integron-integrase gene, intI1, were determined in both pig slurry and soil, as well as residues of 36 antibiotics. Soil chemical and biochemical parameters were also measured. Twelve antibiotics were detected in the slurry in the range of 3 µg kg-1-3605 µg kg-1, with doxycycline, lincomycin, and tiamulin being the most abundant, whereas ermB, sul1, and tetM were the predominant ARGs. Before spreading, neither antibiotic residues nor ARGs were detectable in the soil; afterwards, their concentrations mirrored those in the slurry, with a gradual decline over the duration of the experiment. After about three months, the effect of the amendment was almost over, and no further evolution was observed.
Collapse
Affiliation(s)
- Luisa Massaccesi
- National Research Council of Italy, Institute for Agriculture and Forestry Systems in the Mediterranean (ISAFOM-CNR), 06128 Perugia, Italy;
| | - Elisa Albini
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy; (E.A.); (D.G.); (F.P.); (S.S.); (C.F.M.); (R.G.)
| | - Francesca Romana Massacci
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy; (E.A.); (D.G.); (F.P.); (S.S.); (C.F.M.); (R.G.)
| | - Danilo Giusepponi
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy; (E.A.); (D.G.); (F.P.); (S.S.); (C.F.M.); (R.G.)
| | - Fabiola Paoletti
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy; (E.A.); (D.G.); (F.P.); (S.S.); (C.F.M.); (R.G.)
| | - Stefano Sdogati
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy; (E.A.); (D.G.); (F.P.); (S.S.); (C.F.M.); (R.G.)
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnology, Biochemical and Biotechnological Sciences, University of Perugia, 06122 Perugia, Italy;
| | - Alberto Agnelli
- Department of Agricultural, Food and Environmental Science, University of Perugia, 06124 Perugia, Italy; (A.A.); (A.L.)
| | - Angelo Leccese
- Department of Agricultural, Food and Environmental Science, University of Perugia, 06124 Perugia, Italy; (A.A.); (A.L.)
| | - Chiara Francesca Magistrali
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy; (E.A.); (D.G.); (F.P.); (S.S.); (C.F.M.); (R.G.)
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini”, 25124 Brescia, Italy
| | - Roberta Galarini
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, 06126 Perugia, Italy; (E.A.); (D.G.); (F.P.); (S.S.); (C.F.M.); (R.G.)
| |
Collapse
|
7
|
Barola C, Brambilla G, Galarini R, Moretti S, Morabito S. Assessment of the combined inputs of antimicrobials from top soil improvers and irrigation waters on green leafy vegetable fields. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:313-324. [PMID: 38295296 DOI: 10.1080/19440049.2024.2306930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/12/2024] [Indexed: 02/02/2024]
Abstract
Sustainable food systems involve the recycling of biowaste and water. This study characterizes thirty-one top soil improvers of anthropogenic, animal, and green waste origin, along with eleven irrigation waters from rivers, channels, and civil wastewater treatment plants (cWWTPs) for the presence of antimicrobials. Liquid chromatography coupled with hybrid High-Resolution Mass Spectrometry (LC-HRMS/MS) was employed to identify forty-eight drugs belonging to the classes of sulfonamides (11), tetracyclines (7), fluoroquinolones (10), macrolides (12), amphenicols (3), pleuromutilins (2), diaminopyrimidines (1), rifamycins (1) and licosamides (1). Sludge from cWWTPs, animal manure, slurry, and poultry litter exhibited the highest loads for sulfonamides, tetracyclines, fluoroquinolones and macrolides (80, 470, 885, and 4,487 ng g-1 wet weight, respectively) with nor- and ciprofloxacin serving as markers for anthropogenic sources. In compost and digestate, antimicrobials were found to be almost always below the limits of quantification. Reused water from cWWTPs for irrigation in open-field lettuce production were contaminated in the range of 12-221 ng L-1 with sulfonamides, tetracyclines, and fluoroquinolones, compared to very few detected in channels and surface waters. The Antimicrobials Hazard Index (HI), based on the Predicted No Effect Concentration for Antimicrobial Resistance (PNECAMR), was significantly >100 in contaminated topsoil improvers from urban and animal sources. Accounting for worst-case inputs from topsoil improvers and irrigation water, as well as dilution factors in amended soil, fluoroquinolones only exhibited an HI around 1 in open fields for lettuce production. The origin of topsoil improvers plays a pivotal role in ensuring safe and sustainable leafy vegetable production, thereby mitigating the risk of Antimicrobial Resistance (AMR) onset in food-borne diseases and the transfer of AMR elements to the human gut flora.
Collapse
Affiliation(s)
- Carolina Barola
- Centro Specialistico Sviluppo Metodi Analitici, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Perugia, Italy
| | - Gianfranco Brambilla
- Food Borne Diseases and One Health Unit, Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Roberta Galarini
- Centro Specialistico Sviluppo Metodi Analitici, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Perugia, Italy
| | - Simone Moretti
- Centro Specialistico Sviluppo Metodi Analitici, Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Perugia, Italy
| | - Stefano Morabito
- Food Borne Diseases and One Health Unit, Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|