1
|
Weng X, Gonzalez M, Angelia J, Piroozmand S, Jamehdor S, Behrooz AB, Latifi-Navid H, Ahmadi M, Pecic S. Lipidomics-driven drug discovery and delivery strategies in glioblastoma. Biochim Biophys Acta Mol Basis Dis 2024; 1871:167637. [PMID: 39722408 DOI: 10.1016/j.bbadis.2024.167637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
With few viable treatment options, glioblastoma (GBM) is still one of the most aggressive and deadly types of brain cancer. Recent developments in lipidomics have demonstrated the potential of lipid metabolism as a therapeutic target in GBM. The thorough examination of lipids in biological systems, or lipidomics, is essential to comprehending the changed lipid profiles found in GBM, which are linked to the tumor's ability to grow, survive, and resist treatment. The use of lipidomics in drug delivery and discovery is examined in this study, focusing on how it may be used to find new biomarkers, create multi-target directed ligands, and improve drug delivery systems. We also cover the use of FDA-approved medications, clinical trials that use lipid-targeted medicines, and the integration of lipidomics with other omics technologies. This study emphasizes lipidomics as a possible tool in developing more effective treatment methods for GBM by exploring various lipid-centric techniques.
Collapse
Affiliation(s)
- Xiaohui Weng
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, United States
| | - Michael Gonzalez
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, United States
| | - Jeannes Angelia
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, United States
| | - Somayeh Piroozmand
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Saleh Jamehdor
- Department of Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Sciences, University of Manitoba, Max Rady College of Medicine, Winnipeg, Manitoba, Canada
| | - Hamid Latifi-Navid
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran; School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.; Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Iran
| | - Mazaher Ahmadi
- Department of Analytical Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, United States.
| |
Collapse
|
2
|
Chen G, Wu X, Zhu H, Li K, Zhang J, Sun S, Wang H, Wang M, Shao B, Li H, Zhang Y, Du S. Multisample lipidomic profiles of irritable bowel syndrome and irritable bowel syndrome-like symptoms in patients with inflammatory bowel disease: new insight into the recognition of the same symptoms in different diseases. J Gastroenterol 2024; 59:1000-1010. [PMID: 39254836 PMCID: PMC11496327 DOI: 10.1007/s00535-024-02148-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Overlapping clinical manifestations of irritable bowel syndrome (IBS) and IBS-like symptoms in patients with inflammatory bowel disease (IBD-IBS) present challenges in diagnosis and management. Both conditions are associated with alterations in metabolites, but few studies have described the lipid profiles. Our aim was to pinpoint specific lipids that contribute to the pathogenesis of IBS and IBD-IBS by analyzing multiple biologic samples. METHODS Diarrhea-predominant IBS (IBS-D) patients (n = 39), ulcerative colitis in remission with IBS-like symptoms patients (UCR-IBS) (n = 21), and healthy volunteers (n = 35) were recruited. IBS-D patients meet the Rome IV diagnostic criteria, and UCR-IBS patients matched mayo scores ≤ two points and Rome IV diagnostic criteria. Serum, feces, and mucosa were collected for further analysis. Lipid extraction was carried out by ultra-performance liquid chromatography-high resolution mass spectrometry (UPLC-HRMS). RESULTS Lipidomics of mucosa and serum samples significantly differed among the three groups. Feces showed the most altered lipid species, and the enrichment analysis of 347 differentially abundant metabolites via KEGG pathway analysis revealed that alpha-linolenic acid metabolism was significantly altered in the two groups (P < 0.01). The ratio of omega-6/omega-3 fatty acid were imbalance in serum samples. CONCLUSIONS This study revealed a comprehensive lipid composition pattern between IBS-D patients and UCR-IBS patients. We found several distinctive lipids involved in alpha-linolenic acid metabolism, reflecting an imbalance in the omega-6/omega-3 fatty acid ratio. Compared to mucosa and serum samples, fecal samples might have more advantages in lipidomics studies due to the convenience of sample collection and effectiveness in reflecting metabolic information.
Collapse
Affiliation(s)
- Guorong Chen
- Department of Gastroenterology, China-Japan Friendship Hospital(Institute of Clinical Medical Sciences), Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100029, China
| | - Xuan Wu
- School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Huiting Zhu
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Kemin Li
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Junhai Zhang
- Department of Gastroenterology, China-Japan Friendship Hospital(Institute of Clinical Medical Sciences), Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100029, China
| | - Shijie Sun
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Huifen Wang
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Miao Wang
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Bing Shao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Hui Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Yanli Zhang
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Shiyu Du
- Department of Gastroenterology, China-Japan Friendship Hospital(Institute of Clinical Medical Sciences), Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100029, China.
| |
Collapse
|
3
|
Chappel JR, Kirkwood-Donelson KI, Dodds JN, Fleming J, Reif DM, Baker ES. Streamlining Phenotype Classification and Highlighting Feature Candidates: A Screening Method for Non-Targeted Ion Mobility Spectrometry-Mass Spectrometry (IMS-MS) Data. Anal Chem 2024; 96:15970-15979. [PMID: 39292613 PMCID: PMC11480931 DOI: 10.1021/acs.analchem.4c03256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Nontargeted analysis (NTA) is increasingly utilized for its ability to identify key molecular features beyond known targets in complex samples. NTA is particularly advantageous in exploratory studies aimed at identifying phenotype-associated features or molecules able to classify various sample types. However, implementing NTA involves extensive data analyses and labor-intensive annotations. To address these limitations, we developed a rapid data screening capability compatible with NTA data collected on a liquid chromatography, ion mobility spectrometry, and mass spectrometry (LC-IMS-MS) platform that allows for sample classification while highlighting potential features of interest. Specifically, this method aggregates the thousands of IMS-MS spectra collected across the LC space for each sample and collapses the LC dimension, resulting in a single summed IMS-MS spectrum for screening. The summed IMS-MS spectra are then analyzed with a bootstrapped Lasso technique to identify key regions or coordinates for phenotype classification via support vector machines. Molecular annotations are then performed by examining the features present in the selected coordinates, highlighting potential molecular candidates. To demonstrate this summed IMS-MS screening approach, we applied it to clinical plasma lipidomic NTA data and exposomic NTA data from water sites with varying contaminant levels. Distinguishing coordinates were observed in both studies, enabling the evaluation of phenotypic molecular annotations and resulting in screening models capable of classifying samples with up to a 25% increase in accuracy compared to models using annotated data.
Collapse
Affiliation(s)
- Jessie R Chappel
- Bioinformatics Research Center, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Kaylie I Kirkwood-Donelson
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Durham, North Carolina 27709, United States
| | - James N Dodds
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Jonathon Fleming
- Bioinformatics Research Center, Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - David M Reif
- Predictive Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Durham, North Carolina 27709, United States
| | - Erin S Baker
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| |
Collapse
|
4
|
Liu P, Liu Z, Zhu J, Zhou H, Zhang G, Sun Z, Yajun Li, Zhou Z, Liu Y. Analysis of the lipidomic profile of vegetable oils and animal fats and changes during aging by UPLC-Q-exactive orbitrap mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4150-4159. [PMID: 38864437 DOI: 10.1039/d4ay00538d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Vegetable oil and animal fat residues are common evidence in the cases of homicide, arson, theft, and other crimes. However, the lipid composition and content changes during aging on complex carriers remain unclear. Therefore, this study dynamically monitored the lipid composition and content changes during aging of 13 different types of vegetable oils and animal fats on five different carriers using the UPLC-Q-Exactive Orbitrap MS method. A total of 6 subclasses of 93 lipids including lysophosphatidylcholine (2 species), phosphatidylcholine (2 species), diglyceride (5 species), triglyceride (81 species), acylGlcCampesterol ester (2 species), and acylGlcSitosterol ester (1 species), were first identified in fresh vegetable oils and animal fats. By comparing the LC-MS/MS chromatograms of fresh vegetable oils and animal fats, it was found that there were significant differences between the chromatograms of vegetable oils and animal fats, but it was difficult to distinguish between the chromatograms of vegetable oils or animal fats. After aging at 60 °C for 200 days, there was a significant decrease in the content of diglyceride, triglyceride, acylGlcCampesterol ester, and acylGlcSitosterol ester, while the content of lysophosphatidylcholine and phosphatidylcholine initially increased and then decreased. Furthermore, statistical analysis of lipid differences between vegetable oils and animal fats was performed using cluster heat maps, volcanic maps, PCA, and OPLS-DA. On average, 33 significantly different lipids were screened (VIP > 1, p < 0.05), which could serve as potential biomarkers for distinguishing vegetable oils and animal fats. It was found that the potential biomarkers still existed during aging of vegetable oils and animal fats (100 and 200 days). This research provides important reference information for the identification of vegetable oil and animal fat residues in complex carriers at crime scenes.
Collapse
Affiliation(s)
- Pingyang Liu
- People's Public Security University of China, Beijing 100038, China
| | - Zhanfang Liu
- Ministry of Public Security Institute of Forensic Science, Beijing 100038, China.
| | - Jun Zhu
- Ministry of Public Security Institute of Forensic Science, Beijing 100038, China.
| | - Hong Zhou
- Ministry of Public Security Institute of Forensic Science, Beijing 100038, China.
| | - Guannan Zhang
- Ministry of Public Security Institute of Forensic Science, Beijing 100038, China.
| | - Zhenwen Sun
- Ministry of Public Security Institute of Forensic Science, Beijing 100038, China.
| | - Yajun Li
- Ministry of Public Security Institute of Forensic Science, Beijing 100038, China.
| | - Zheng Zhou
- Ministry of Public Security Institute of Forensic Science, Beijing 100038, China.
| | - Yao Liu
- People's Public Security University of China, Beijing 100038, China
- Ministry of Public Security Institute of Forensic Science, Beijing 100038, China.
| |
Collapse
|
5
|
Kirkwood-Donelson KI, Chappel J, Tobin E, Dodds JN, Reif DM, DeWitt JC, Baker ES. Investigating mouse hepatic lipidome dysregulation following exposure to emerging per- and polyfluoroalkyl substances (PFAS). CHEMOSPHERE 2024; 354:141654. [PMID: 38462188 PMCID: PMC10995748 DOI: 10.1016/j.chemosphere.2024.141654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are environmental pollutants that have been associated with adverse health effects including liver damage, decreased vaccine responses, cancer, developmental toxicity, thyroid dysfunction, and elevated cholesterol. The specific molecular mechanisms impacted by PFAS exposure to cause these health effects remain poorly understood, however there is some evidence of lipid dysregulation. Thus, lipidomic studies that go beyond clinical triglyceride and cholesterol tests are greatly needed to investigate these perturbations. Here, we have utilized a platform coupling liquid chromatography, ion mobility spectrometry, and mass spectrometry (LC-IMS-MS) separations to simultaneously evaluate PFAS bioaccumulation and lipid metabolism disruptions. For the study, liver samples collected from C57BL/6 mice exposed to either of the emerging PFAS hexafluoropropylene oxide dimer acid (HFPO-DA or "GenX") or Nafion byproduct 2 (NBP2) were assessed. Sex-specific differences in PFAS accumulation and liver size were observed for both PFAS, in addition to disturbed hepatic liver lipidomic profiles. Interestingly, GenX resulted in less hepatic bioaccumulation than NBP2 yet gave a higher number of significantly altered lipids when compared to the control group, implying that the accumulation of substances in the liver may not be a reliable measure of the substance's capacity to disrupt the liver's natural metabolic processes. Specifically, phosphatidylglycerols, phosphatidylinositols, and various specific fatty acyls were greatly impacted, indicating alteration of inflammation, oxidative stress, and cellular signaling processes due to emerging PFAS exposure. Overall, these results provide valuable insight into the liver bioaccumulation and molecular mechanisms of GenX- and NBP2-induced hepatotoxicity.
Collapse
Affiliation(s)
- Kaylie I Kirkwood-Donelson
- Department of Chemistry, North Carolina State University, Raleigh, NC 27606, USA; Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| | - Jessie Chappel
- Bioinformatics Research Center, Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - Emma Tobin
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - James N Dodds
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - David M Reif
- Predictive Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| | - Jamie C DeWitt
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Erin S Baker
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA.
| |
Collapse
|