1
|
Calik A, Emami NK, White MB, Dalloul RA. Fate of transgenic soybean DNA and immune response of broilers fed genetically modified DP-3Ø5423-1 soybean. Poult Sci 2024; 103:103499. [PMID: 38330889 PMCID: PMC10864803 DOI: 10.1016/j.psj.2024.103499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/02/2024] [Accepted: 01/21/2024] [Indexed: 02/10/2024] Open
Abstract
Increased use of genetically modified (GM) plants in the food and feed industry has raised several concerns about the presence of unwanted genes in the food chain and potential associated health risks. In recent years, several studies have compared the nutrient contents of GM crops to conventional counterparts, and some have also tracked the fate of novel DNA fragments and proteins in the gastrointestinal (GIT) and their presence in several tissues. This study was conducted to investigate the fate of transgenic PHP19340A DNA fragment containing gm-fad2-1 (Soybean Event DP-3Ø5423-1) gene in digestive tract contents, blood, internal organs, and muscle tissues. The effects of feeding DP-3Ø5423-1 full-fat soybean meal (FFSBM) to broiler chickens on immune response and blood profiles were also evaluated on d 35. Day-old Ross 308 birds (n = 480) were randomly allocated to 24 floor pens in a 2 × 2 factorial arrangement with diet and gender as main factors. Birds were fed diets containing 20% of either DP-3Ø5423-1 or non-GM FFSBM for 35 d. Data were subjected to a 2-way ANOVA using the GLM procedure of JMP (Pro13). Based on PCR analysis, transgenic PHP19340A DNA fragment containing gm-fad2-1 gene was degraded throughout the digestive system to reach undetectable level in the cecal digesta. Moreover, there was no transgenic gene translocation to blood, organs, or muscle tissue. Feeding DP-3Ø5423-1 FFSBM to broilers had no effect on mRNA abundance of IL-1β, IL-2, IL-6, IL-12B, IL-17A, IFNγ, TNFα, and NF-κB in the spleen or on blood profile. In conclusion, these findings indicate that the examined transgenic fragment in DP-3Ø5423-1 FFSBM progressively degraded in the GIT and did not translocate into blood or tissues. Along with the immune response and blood profile findings, it can be assumed that DP-3Ø5423-1 soybean is safe and unlikely to pose any health risks to broilers or consumers.
Collapse
Affiliation(s)
- Ali Calik
- Avian Immunobiology Laboratory, Department of Poultry Science, University of Georgia, Athens, GA 30602, USA; Department of Animal Nutrition & Nutritional Diseases, Faculty of Veterinary Medicine, Ankara University, Ankara, 06110, Turkey
| | - Nima K Emami
- Avian Immunobiology Laboratory, Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Mallory B White
- School of STEM, Virginia Western Community College, Roanoke, VA 24015, USA
| | - Rami A Dalloul
- Avian Immunobiology Laboratory, Department of Poultry Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
2
|
Nadal A, De Giacomo M, Einspanier R, Kleter G, Kok E, McFarland S, Onori R, Paris A, Toldrà M, van Dijk J, Wal JM, Pla M. Exposure of livestock to GM feeds: Detectability and measurement. Food Chem Toxicol 2017; 117:13-35. [PMID: 28847764 DOI: 10.1016/j.fct.2017.08.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/30/2017] [Accepted: 08/22/2017] [Indexed: 11/30/2022]
Abstract
This review explores the possibilities to determine livestock consumption of genetically modified (GM) feeds/ingredients including detection of genetically modified organism (GMO)-related DNA or proteins in animal samples, and the documentary system that is in place for GM feeds under EU legislation. The presence and level of GMO-related DNA and proteins can generally be readily measured in feeds, using established analytical methods such as polymerase chain reaction and immuno-assays, respectively. Various technical challenges remain, such as the simultaneous detection of multiple GMOs and the identification of unauthorized GMOs for which incomplete data on the inserted DNA may exist. Given that transfer of specific GMO-related DNA or protein from consumed feed to the animal had seldom been observed, this cannot serve as an indicator of the individual animal's prior exposure to GM feeds. To explore whether common practices, information exchange and the specific GM feed traceability system in the EU would allow to record GM feed consumption, the dairy chain in Catalonia, where GM maize is widely grown, was taken as an example. It was thus found that this system would neither enable determination of an animal's consumption of specific GM crops, nor would it allow for quantitation of the exposure.
Collapse
Affiliation(s)
- Anna Nadal
- Institute for Food and Agricultural Technology (INTEA), University of Girona, Campus Montilivi (EPS-1), 17003 Girona, Spain.
| | - Marzia De Giacomo
- Department of Veterinary Public Health and Food Safety, GMO and Mycotoxins Unit, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Ralf Einspanier
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | - Gijs Kleter
- RIKILT Wageningen University & Research, Akkermaalsbos 2, 6708WB Wageningen, The Netherlands
| | - Esther Kok
- RIKILT Wageningen University & Research, Akkermaalsbos 2, 6708WB Wageningen, The Netherlands
| | - Sarah McFarland
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | - Roberta Onori
- Department of Veterinary Public Health and Food Safety, GMO and Mycotoxins Unit, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Alain Paris
- Sorbonne Universités, Muséum National d'Histoire Naturelle, CNRS, UMR7245 MCAM, Paris, France
| | - Mònica Toldrà
- Institute for Food and Agricultural Technology (INTEA), University of Girona, Campus Montilivi (EPS-1), 17003 Girona, Spain
| | - Jeroen van Dijk
- RIKILT Wageningen University & Research, Akkermaalsbos 2, 6708WB Wageningen, The Netherlands
| | - Jean-Michel Wal
- AgroParisTech, Institut National de la Recherche Agronomique (INRA), Paris, France
| | - Maria Pla
- Institute for Food and Agricultural Technology (INTEA), University of Girona, Campus Montilivi (EPS-1), 17003 Girona, Spain
| |
Collapse
|
3
|
Van Eenennaam AL, Young AE. Detection of dietary DNA, protein, and glyphosate in meat, milk, and eggs. J Anim Sci 2017; 95:3247-3269. [PMID: 28727079 DOI: 10.2527/jas.2016.1346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Products such as meat, milk, and eggs from animals that have consumed genetically engineered (GE) feed are not currently subject to mandatory GE labeling requirements. Some voluntary "non-genetically modified organism" labeling has been associated with such products, indicating that the animals were not fed GE crops, as there are no commercialized GE food animals. This review summarizes the available scientific literature on the detection of dietary DNA and protein in animal products and briefly discusses the implications of mandatory GE labeling for products from animals that have consumed GE feed. Because glyphosate is used on some GE crops, the available studies on glyphosate residues in animal products are also reviewed. In GE crops, recombinant DNA (rDNA) makes up a small percentage of the plant's total DNA. The final amount of DNA in food/feed depends on many factors including the variable number and density of cells in the edible parts, the DNA-containing matrix, environmental conditions, and the specific transgenic event. Processing treatments and animals' digestive systems degrade DNA into small fragments. Available reports conclude that endogenous DNA and rDNA are processed in exactly the same way in the gastrointestinal tract and that they account for a very small proportion of food intake by weight. Small pieces of high copy number endogenous plant genes have occasionally been detected in meat and milk. Similarly sized pieces of rDNA have also been identified in meat, primarily fish, although detection is inconsistent. Dietary rDNA fragments have not been detected in chicken or quail eggs or in fresh milk from cows or goats. Collectively, studies have failed to identify full-length endogenous or rDNA transcripts or recombinant proteins in meat, milk, or eggs. Similarly, because mammals do not bioaccumulate glyphosate and it is rapidly excreted, negligible levels of glyphosate in cattle, pig and poultry meat, milk, and eggs have been reported. Despite consumer concern about the presence of trace concentrations of glyphosate that might have been applied to feed crops and/or the presence of rDNA or recombinant proteins in meat, milk, and eggs, the available data do not provide evidence to suggest that products from animals that have consumed approved GE feed crops differ in any distinguishable way from those derived from animals fed conventional feed or that products from animals fed GE feedstuffs pose novel health risks.
Collapse
|
4
|
Chaudhari A, Pathakota GB, Annam PK. Design and Construction of Shrimp Antiviral DNA Vaccines Expressing Long and Short Hairpins for Protection by RNA Interference. Methods Mol Biol 2016; 1404:225-240. [PMID: 27076302 DOI: 10.1007/978-1-4939-3389-1_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
DNA vaccines present the aquaculture industry with an effective and economically viable method of controlling viral pathogens that drastically affect productivity. Since specific immune response is rudimentary in invertebrates, the presence of RNA interference (RNAi) pathway in shrimps provides a promising new approach to vaccination. Plasmid DNA vaccines that express short or long double stranded RNA in vivo have shown protection against viral diseases. The design, construction and considerations for preparing such vaccines are discussed.
Collapse
Affiliation(s)
- Aparna Chaudhari
- ICAR-Central Institute of Fisheries Education, Versova, Andheri West, Mumbai, 400061, India.
| | - Gireesh-Babu Pathakota
- ICAR-Central Institute of Fisheries Education, Versova, Andheri West, Mumbai, 400061, India
| | - Pavan-Kumar Annam
- ICAR-Central Institute of Fisheries Education, Versova, Andheri West, Mumbai, 400061, India
| |
Collapse
|
5
|
Johannessen LE, Spilsberg B, Wiik-Nielsen CR, Kristoffersen AB, Holst-Jensen A, Berdal KG. DNA-fragments are transcytosed across CaCo-2 cells by adsorptive endocytosis and vesicular mediated transport. PLoS One 2013; 8:e56671. [PMID: 23409196 PMCID: PMC3569430 DOI: 10.1371/journal.pone.0056671] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 01/16/2013] [Indexed: 11/22/2022] Open
Abstract
Dietary DNA is degraded into shorter DNA-fragments and single nucleosides in the gastrointestinal tract. Dietary DNA is mainly taken up as single nucleosides and bases, but even dietary DNA-fragments of up to a few hundred bp are able to cross the intestinal barrier and enter the blood stream. The molecular mechanisms behind transport of DNA-fragments across the intestine and the effects of this transport on the organism are currently unknown. Here we investigate the transport of DNA-fragments across the intestinal barrier, focusing on transport mechanisms and rates. The human intestinal epithelial cell line CaCo-2 was used as a model. As DNA material a PCR-fragment of 633 bp was used and quantitative real time PCR was used as detection method. DNA-fragments were found to be transported across polarized CaCo-2 cells in the apical to basolateral direction (AB). After 90 min the difference in directionality AB vs. BA was >103 fold. Even undegraded DNA-fragments of 633 bp could be detected in the basolateral receiver compartment at this time point. Transport of DNA-fragments was sensitive to low temperature and inhibition of endosomal acidification. DNA-transport across CaCo-2 cells was not competed out with oligodeoxynucleotides, fucoidan, heparin, heparan sulphate and dextrane sulphate, while linearized plasmid DNA, on the other hand, reduced transcytosis of DNA-fragments by a factor of approximately 2. Our findings therefore suggest that vesicular transport is mediating transcytosis of dietary DNA-fragments across intestinal cells and that DNA binding proteins are involved in this process. If we extrapolate our findings to in vivo conditions it could be hypothesized that this transport mechanism has a function in the immune system.
Collapse
|
6
|
Ballesteros NA, Saint-Jean SSR, Encinas PA, Perez-Prieto SI, Coll JM. Oral immunization of rainbow trout to infectious pancreatic necrosis virus (Ipnv) induces different immune gene expression profiles in head kidney and pyloric ceca. FISH & SHELLFISH IMMUNOLOGY 2012; 33:174-185. [PMID: 22521628 DOI: 10.1016/j.fsi.2012.03.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 03/14/2012] [Accepted: 03/15/2012] [Indexed: 05/31/2023]
Abstract
Induction of neutralizing antibodies and protection by oral vaccination with DNA-alginates of rainbow trout Oncorhynchus mykiss against infectious pancreatic necrosis virus (IPNV) was recently reported. Because orally induced immune response transcript gene profiles had not been described yet neither in fish, nor after IPNV vaccination, we studied them in head kidney (an immune response internal organ) and a vaccine entry tissue (pyloric ceca). By using an oligo microarray enriched in immune-related genes validated by RTqPCR, the number of increased transcripts in head kidney was higher than in pyloric ceca while the number of decreased transcripts was higher in pyloric ceca than in head kidney. Confirming previous reports on intramuscular DNA vaccination or viral infection, mx genes increased their transcription in head kidney. Other transcript responses such as those corresponding to interferons, their receptors and induced proteins (n=91 genes), VHSV-induced genes (n=25), macrophage-related genes (n=125), complement component genes (n=176), toll-like receptors (n=31), tumor necrosis factors (n=32), chemokines and their receptors (n=121), interleukines and their receptors (n=119), antimicrobial peptides (n=59), and cluster differentiation antigens (n=58) showed a contrasting and often complementary behavior when head kidney and pyloric ceca were compared. For instance, classical complement component transcripts increased in head kidney while only alternative pathway transcripts increased in pyloric ceca, different β-defensins increased in head kidney but remained constant in pyloric ceca. The identification of new gene markers on head kidney/pyloric ceca could be used to follow up and/or to improve immunity during fish oral vaccination.
Collapse
Affiliation(s)
- Natalia A Ballesteros
- Centro de Investigaciones Biologicas, CSIC, C/Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
7
|
Rizzi A, Raddadi N, Sorlini C, Nordgrd L, Nielsen KM, Daffonchio D. The Stability and Degradation of Dietary DNA in the Gastrointestinal Tract of Mammals: Implications for Horizontal Gene Transfer and the Biosafety of GMOs. Crit Rev Food Sci Nutr 2012; 52:142-61. [DOI: 10.1080/10408398.2010.499480] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
8
|
de las Heras AI, Rodríguez Saint-Jean S, Pérez-Prieto SI. Immunogenic and protective effects of an oral DNA vaccine against infectious pancreatic necrosis virus in fish. FISH & SHELLFISH IMMUNOLOGY 2010; 28:562-70. [PMID: 20034576 DOI: 10.1016/j.fsi.2009.12.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 12/10/2009] [Accepted: 12/12/2009] [Indexed: 05/12/2023]
Abstract
DNA vaccines and oral DNA-based immunotherapy against infectious pancreatic necrosis virus (IPNV) have scarcely been studied in salmonid fish. Here, a vector with the capsid VP2 gene inserted was encapsulated in alginate microspheres to avoid the aggressive gastrointestinal conditions experienced following oral administration. Alginate microspheres were effective to protect the pDNA encoding VP2, which was expressed early in different organs of the vaccinated trout and that persisted for at least 60 days. The vaccine induces innate immune responses, raising the expression of IFN more than 10-fold relative to the fish vaccinated with the empty plasmid, at 7 and 15 days post-vaccination. Likewise, maximal expression of the IFN-induced antiviral Mx protein was recorded 15 days post-vaccination and neutralizing antibodies were also detected after 15 days, although their titre rose further at 21 days post-vaccination. Protection was high in the immunized fish, which showed around an 80% relative survival when challenged 15 and 30 days after vaccine delivery. Very low viral load with respect to the control group was detected in the vaccinated fish that survived 45 days after challenge. Thus, this study demonstrates the potential of the encapsulation technique for IPNV-DNA vaccine delivery and the relevance of the IPNV-VP2 gene for future plasmid constructs.
Collapse
Affiliation(s)
- Ana I de las Heras
- Centro de Investigaciones Biológicas, Departamento de Microbiología Molecular y Biología de las Infecciones, C/Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | |
Collapse
|
9
|
Sissener NH, Johannessen LE, Hevrøy EM, Wiik-Nielsen CR, Berdal KG, Nordgreen A, Hemre GI. Zebrafish ( Danio rerio) as a model for investigating the safety of GM feed ingredients (soya and maize); performance, stress response and uptake of dietary DNA sequences. Br J Nutr 2010; 103:3-15. [PMID: 19706208 DOI: 10.1017/s0007114509991401] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A 20-d zebrafish (Danio rerio) feeding trial, in which a near doubling of fish weight was achieved, was conducted with GM feed ingredients to evaluate feed intake, growth, stress response and uptake of dietary DNA. A partial aim of the study was to assess zebrafish as a model organism in GM safety assessments. Roundup Ready soya (RRS), YieldGard Bt maize (MON810) and their non-modified, maternal, near-isogenic lines were used in a 2 x 2 factorial design. Soya variety and maize variety were the main factors, both with two levels; non-GM and GM. Compared with fish fed non-GM maize, those fed GM maize exhibited significantly better growth, had lower mRNA transcription levels of superoxide dismutase (SOD)-1 and a tendency (non-significant) towards lower transcription of heat shock protein 70 in liver. Sex of the fish and soya variety had significant interaction effects on total RNA yield from the whole liver and transcription of SOD-1, suggesting that some diet component affecting males and females differently was present in different levels in the GM and the non-GM soya used in the present study. Dietary DNA sequences were detected in all of the organs analysed, but not all of the samples. Soya and maize rubisco (non-transgenic, multicopy genes) were most frequently detected, while MON810 transgenic DNA fragments were detected in some samples and RRS fragments were not detected. In conclusion, zebrafish shows promise as a model for this application.
Collapse
Affiliation(s)
- Nini H Sissener
- National Institute of Seafood and Nutrition Research (NIFES), Bergen, Norway.
| | | | | | | | | | | | | |
Collapse
|
10
|
de Las Heras AI, Pérez Prieto SI, Rodríguez Saint-Jean S. In vitro and in vivo immune responses induced by a DNA vaccine encoding the VP2 gene of the infectious pancreatic necrosis virus. FISH & SHELLFISH IMMUNOLOGY 2009; 27:120-129. [PMID: 19121400 DOI: 10.1016/j.fsi.2008.11.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 11/21/2008] [Accepted: 11/27/2008] [Indexed: 05/27/2023]
Abstract
The work presented here describes the construction of a plasmid encoding the VP2 gene of the infectious pancreatic necrosis virus (IPNV), its expression in BF-2 cells and an evaluation of its activity in brown trout (Salmo trutta L) soon after injection. Preliminary experiments to evaluate the potential of the plasmid to induce neutralizing antibodies were also performed. We established a BF-2 cell line that expresses VP2 constitutively and we examined the infection of these VP2-transfected BF-2 cells with homologous and heterologous viruses. The expression kinetics of IFN, and of the IFN-induced genes Mx and ISG15, was also evaluated in brown trout over a 15 day interval, and quantified by real-time or semi-quantitative PCR. Type I IFN and Mx are markers of the non-specific innate immune response to viruses and they are involved in antiviral defences. Our results demonstrate that expression of the IPNV VP2 protein in BF-2 cells induces an antiviral state against IPNV and against the infectious haematopoietic necrosis virus (IHNV). In BF-2 infected cells, VP2 inhibited both the IPNV and IHNV-induced cytopathic effect to some extent, as well as the virus yield. In vivo, VP2 was expressed in haematopoietic tissues such as the head kidney of 7 month-old trout. In addition, it induced early immune responses and specific immunity 30 days after injection. IFN mRNA expression increased sharply on the 1st and 15th day post-injection and expression of other IFN-induced genes as Mx and ISG15 was also detected soon after vaccination of brown trout. Moreover, specific antibodies were detected 30 days after vaccination. These results suggest that the VP2 gene is a good candidate for the design of IPNV-DNA vaccines and to investigate the use of cytokines as co-stimulatory molecules.
Collapse
Affiliation(s)
- Ana I de Las Heras
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Departamento de Microbiología Molecular, C/Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | |
Collapse
|
11
|
Holst-Jensen A. Testing for genetically modified organisms (GMOs): Past, present and future perspectives. Biotechnol Adv 2009; 27:1071-1082. [PMID: 19477261 DOI: 10.1016/j.biotechadv.2009.05.025] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This paper presents an overview of GMO testing methodologies and how these have evolved and may evolve in the next decade. Challenges and limitations for the application of the test methods as well as to the interpretation of results produced with the methods are highlighted and discussed, bearing in mind the various interests and competences of the involved stakeholders. To better understand the suitability and limitations of detection methodologies the evolution of transformation processes for creation of GMOs is briefly reviewed.
Collapse
Affiliation(s)
- Arne Holst-Jensen
- Department of Feed and Food Safety, National Veterinary Institute, Ullevaalsveien 68, P.O. Box 750 Sentrum, 0106 Oslo, Norway.
| |
Collapse
|
12
|
Bertheau Y, Helbling JC, Fortabat MN, Makhzami S, Sotinel I, Audéon C, Nignol AC, Kobilinsky A, Petit L, Fach P, Brunschwig P, Duhem K, Martin P. Persistence of plant DNA sequences in the blood of dairy cows fed with genetically modified (Bt176) and conventional corn silage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:509-516. [PMID: 19123817 DOI: 10.1021/jf802262c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
To determine whether plant sequences, including transgenic sequences, are present in animal blood, we tested blood samples from Holstein cows fed with either Bt176 genetically modified corn or conventional corn. We used previously described sensitive real-time PCR assays targeting transgenic sequences (35S promoter and Bt176 specific junction sequence), a monocopy maize-specific sequence (ADH promoter), and two multicopy sequences from plant nucleus (26S rRNA gene) and chloroplast (psaB gene). The presence of Cry1A(b) protein in bovine blood samples was also tested using a sandwich ELISA kit. Our study shows the ability of plant nuclear and/or chloroplast DNA fragments to enter bovine blood circulation. However, maize nuclear DNA, both mono- and multicopy sequences, was less detected than chloroplast DNA, probably because the higher number of chloroplast copies and also possibly because nuclear DNA might be less protected by the nuclear membrane. Despite our data confirm the ability of small (ca.150 bp) plant DNA fragments to cross the intestinal barrier, we were unable to demonstrate clearly the presence of transgenic DNA or proteins in bovine blood. No sample tested positive with the two real-time PCR assays targeting transgenic sequences (35S promoter and Bt176 specific junction sequence). Only faint punctual positive results occurred randomly and were probably due to postsample collection or laboratory contamination or can be considered as artifact as they have never been confirmed. Our data highlight the difficulties to detect transgenic sequences in blood of dairy cows fed genetically modified corn (Bt176) silage. Those results show that in order to meet the consumers' demand of animals fed with GM products there is currently no cost-effective analytical procedure to replace documentary traceability.
Collapse
Affiliation(s)
- Y Bertheau
- Agence Française de Sécurité Sanitaire des Aliments, Laboratoire d'Etudes et de Recherches sur la Qualité des Aliments et les Procédés Agro-Alimentaires, Maisons-Alfort, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Tonheim TC, Bøgwald J, Dalmo RA. What happens to the DNA vaccine in fish? A review of current knowledge. FISH & SHELLFISH IMMUNOLOGY 2008; 25:1-18. [PMID: 18448358 DOI: 10.1016/j.fsi.2008.03.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 03/11/2008] [Accepted: 03/12/2008] [Indexed: 05/12/2023]
Abstract
The primary function of DNA vaccines, a bacterial plasmid DNA containing a construct for a given protective antigen, is to establish specific and long-lasting protective immunity against diseases where conventional vaccines fail to induce protection. It is acknowledged that less effort has been made to study the fate, in terms of cellular uptake, persistence and degradation, of DNA vaccines after in vivo administration. However, during the last year some papers have given new insights into the fate of DNA vaccines in fish. By comparing the newly acquired information in fish with similar knowledge from studies in mammals, similarities with regard to transport, blood clearance, cellular uptake and degradation of DNA vaccines have been found. But the amount of DNA vaccine redistributed from the administration site after intramuscular administration seems to differ between fish and mammals. This review presents up-to-date and in-depth knowledge concerning the fate of DNA vaccines with emphasis on tissue distribution, cellular uptake and uptake mechanism(s) before finally describing the intracellular hurdles that DNA vaccines need to overcome in order to produce their gene product.
Collapse
Affiliation(s)
- Tom Christian Tonheim
- Department of Marine Biotechnology, The Norwegian College of Fishery Science, University of Tromsø, N-9037 Tromsø, Norway.
| | | | | |
Collapse
|
14
|
Kok E, Keijer J, Kleter G, Kuiper H. Comparative safety assessment of plant-derived foods. Regul Toxicol Pharmacol 2008; 50:98-113. [DOI: 10.1016/j.yrtph.2007.09.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2007] [Revised: 09/12/2007] [Accepted: 09/24/2007] [Indexed: 12/31/2022]
|
15
|
Tonheim TC, Dalmo RA, Bøgwald J, Seternes T. Specific uptake of plasmid DNA without reporter gene expression in Atlantic salmon (Salmo salar L.) kidney after intramuscular administration. FISH & SHELLFISH IMMUNOLOGY 2008; 24:90-101. [PMID: 18023591 DOI: 10.1016/j.fsi.2007.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 09/24/2007] [Accepted: 09/26/2007] [Indexed: 05/12/2023]
Abstract
In this study we investigated tissue distribution of pDNA after intramuscular and intravenous administration, cellular localisation, receptor-specific uptake, integrity of pDNA and transgene expression in Atlantic salmon (Salmo salar L). Anatomical distribution of plasmid DNA was determined using both radiotracing and fluorescence microscopy. Cellular uptake was studied in cultures of adherent anterior kidney leucocytes. The integrity of the pDNA in vivo was investigated by Southern blot analysis. Transcription of plasmid DNA encoded luciferase gene and protein synthesis were investigated in salmon tissues by means of real-time reverse transcription-polymerase chain reaction and enzyme activity measurements, respectively. Approximately 50% of the total recovered radioactivity was redistributed from the carcass 168h after intramuscular administration and accumulated mainly in the kidneys (37% of total). The majority of radiolabelled plasmid DNA administered intravenously was taken up within the first 15min mainly by the kidney. Intravenous co-administration of trace amounts of radiolabelled plasmid DNA with excess amounts of unlabelled plasmid DNA or formaldehyde treated albumin (a ligand for the scavenger receptors) significantly inhibited accumulation of the radiotracer in the kidney. Fluorescence microscopy demonstrated that fluorescence was localised intracellularly in cells lining the sinusoids of the kidney after intravenous administration of rhodamine-labelled plasmid DNA. Southern blot analysis demonstrated presence of supercoiled plasmid DNA in all organs and tissue samples 168h after intramuscular administration, but degradation products were only revealed at the administration site. Luciferase transcript and activity were only detectable at the administration site 24-168h after intramuscular administration of plasmid DNA. After incubation with trace amounts of radiolabelled plasmid DNA, only minor amounts of radiolabelled plasmid DNA were cell associated in cultures of adherent anterior kidney leucocytes. These results suggested that a substantial portion of radiolabelled plasmid DNA was redistributed from the carcass and was mainly cleared by a receptor-specific uptake in the kidney. Although intact plasmid DNA was detected in the kidney and other tissues, no luciferase transcripts or activity were detected in these samples at any time points investigated (24-168h), except for the administration site following intramuscular administration.
Collapse
Affiliation(s)
- Tom Christian Tonheim
- Department of Marine Biotechnology, The Norwegian College of Fishery Science, University of Tromsø, N-9037 Tromsø, Norway.
| | | | | | | |
Collapse
|
16
|
Tonheim TC, Leirvik J, Løvoll M, Myhr AI, Bøgwald J, Dalmo RA. Detection of supercoiled plasmid DNA and luciferase expression in Atlantic salmon (Salmo salar L.) 535 days after injection. FISH & SHELLFISH IMMUNOLOGY 2007; 23:867-76. [PMID: 17502156 DOI: 10.1016/j.fsi.2007.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 03/26/2007] [Accepted: 03/27/2007] [Indexed: 05/12/2023]
Abstract
In this study our aim was to investigate the persistence and distribution of plasmid DNA in Atlantic salmon. Atlantic salmon (mean weight 70 g) were injected with 100 microg of plasmid DNA in 100 microl of phosphate buffered saline. The fish were reared in running fresh water at temperature 0-12 degrees C and injections were performed at 8 degrees C. After intramuscular injection, samples were obtained from blood and different tissues and organs up to day 535 after injection. We found by use of Southern blotting open circular and supercoiled plasmid DNA at the injection site and plasmid DNA fragments, assessed by real-time PCR, were detected in some of the examined tissues up to day 535. A co-persistence of luciferase transcript and activity were identified at the injection site up to day 535, however analysis of DAM methylation pattern suggested that the plasmid DNA did not replicate in vivo. Our study indicated that the plasmid DNA can persist for a prolonged time after intramuscular injection.
Collapse
Affiliation(s)
- Tom Christian Tonheim
- Department of Marine Biotechnology, The Norwegian College of Fishery Science, University of Tromsø, N-9037, Tromsø, Norway.
| | | | | | | | | | | |
Collapse
|
17
|
Anchored PCR for possible detection and characterisation of foreign integrated DNA at near single molecule level. Eur Food Res Technol 2007. [DOI: 10.1007/s00217-007-0616-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Sagstad A, Sanden M, Haugland Ø, Hansen AC, Olsvik PA, Hemre GI. Evaluation of stress- and immune-response biomarkers in Atlantic salmon, Salmo salar L., fed different levels of genetically modified maize (Bt maize), compared with its near-isogenic parental line and a commercial suprex maize. JOURNAL OF FISH DISEASES 2007; 30:201-12. [PMID: 17394522 DOI: 10.1111/j.1365-2761.2007.00808.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The present study was designed to evaluate if genetically modified (GM) maize (Bt maize, event MON810) compared with the near-isogenic non-modified (nGM) maize variety, added as a starch source at low or high inclusions, affected fish health of post-smolt Atlantic salmon, Salmo salar L. To evaluate the health impact, selected stress- and immune-response biomarkers were quantified at the gene transcript (mRNA) level, and some also at the protein level. The diets with low or high inclusions of GM maize, and its near-isogenic nGM parental line, were compared to a control diet containing GM-free suprex maize (reference diet) as the only starch source. Total superoxide dismutase (SOD) activity in liver and distal intestine was significantly higher in fish fed GM maize compared with fish fed nGM maize and with the reference diet group. Fish fed GM maize showed significantly lower catalase (CAT) activity in liver compared with fish fed nGM maize and to the reference diet group. In contrast, CAT activity in distal intestine was significantly higher for fish fed GM maize compared with fish fed reference diet. Protein level of heat shock protein 70 (HSP70) in liver was significantly higher in fish fed GM maize compared with fish fed the reference diet. No diet-related differences were found in normalized gene expression of SOD, CAT or HSP70 in liver or distal intestine. Normalized gene expression of interleukin-1 beta in spleen and head-kidney did not vary significantly between diet groups. Interestingly, fish fed high GM maize showed a significantly larger proportion of plasma granulocytes, a significantly larger sum of plasma granulocyte and monocyte proportions, but a significantly smaller proportion of plasma lymphocytes, compared with fish fed high nGM maize. In conclusion, Atlantic salmon fed GM maize showed some small changes in stress protein levels and activities, but none of these changes were comparable to the normalized gene expression levels analysed for these stress proteins. GM maize seemed to induce significant changes in white blood cell populations which are associated with an immune response.
Collapse
Affiliation(s)
- A Sagstad
- National Institute of Nutrition and Seafood Research, NIFES, Bergen, Norway
| | | | | | | | | | | |
Collapse
|
19
|
Sanden M, Berntssen MHG, Hemre GI. Intracellular localization of dietary and naked DNA in intestinal tissue of Atlantic salmon, Salmo salar L. using in situ hybridization. Eur Food Res Technol 2006. [DOI: 10.1007/s00217-006-0449-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Persistence and distribution of intravenously injected DNA in blood and organs of Atlantic salmon (Salmo salar L.). Eur Food Res Technol 2005. [DOI: 10.1007/s00217-005-0101-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|