1
|
Zhang Z, Sun L, Chen R, Li Q, Lai X, Wen S, Cao J, Lai Z, Li Z, Sun S. Recent insights into the physicochemical properties, bioactivities and their relationship of tea polysaccharides. Food Chem 2024; 432:137223. [PMID: 37669580 DOI: 10.1016/j.foodchem.2023.137223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/26/2023] [Accepted: 08/18/2023] [Indexed: 09/07/2023]
Abstract
Tea polysaccharides (TPS) is receiving global concern in past years due to their therapeutic effects in many diseases such as obesity and diabetes. Many publications imply that the unique physicochemical properties and bioactivities of TPS are prerequisites for its use as a biofilm, drug carrier and emulsifier. Despite numerous healthy benefits, studies on the in-deep structure-activity relationship of TPS still not well explored and explained yet. The main reasons for the research limitation are attributed mainly to the unbreakable advanced structural research technology and the formation of TPS conjugates. The present review also summarizes some similar parameters in primary structure of TPS with better bioactivities, discusses the relationships between their physicochemical properties and bioactivities, and suggests that function-specific TPS would be obtained in the future if the links between preparation methods, physicochemical properties and bioactivities of TPS could be well understood and established.
Collapse
Affiliation(s)
- Zhenbiao Zhang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Lingli Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Ruohong Chen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Qiuhua Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Xingfei Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Shuai Wen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Junxi Cao
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Zhaoxiang Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Zhigang Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| | - Shili Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China.
| |
Collapse
|
2
|
Influencing Factors on the Physicochemical Characteristics of Tea Polysaccharides. Molecules 2021; 26:molecules26113457. [PMID: 34200163 PMCID: PMC8201348 DOI: 10.3390/molecules26113457] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 11/18/2022] Open
Abstract
Tea polysaccharides (TPSs) are one of the main bioactive constituents of tea with various biological activities such as hypoglycemic effect, antioxidant, antitumor, and immunomodulatory. The bioactivities of TPSs are directly associated with their structures such as chemical composition, molecular weight, glycosidic linkages, and conformation among others. To study the relationship between the structures of TPSs and their bioactivities, it is essential to elucidate the structure of TPSs, particularly the fine structures. Due to the vast variation nature of monosaccharide units and their connections, the structure of TPSs is extremely complex, which is also affected by several major factors including tea species, processing technologies of tea and isolation methods of TPSs. As a result of the complexity, there are few studies on their fine structures and chain conformation. In the present review, we aim to provide a detailed summary of the multiple factors influencing the characteristics of TPS chemical structures such as variations of tea species, degree of fermentation, and preparation methods among others as well as their applications. The main aspects of understanding the structural difference of TPSs and influencing factors are to assist the study of the structure and bioactivity relationship and ultimately, to control the production of the targeted TPSs with the most desired biological activity.
Collapse
|
3
|
Wang H, Hu L, Zhou P, Ouyang L, Chen B, Li Y, Chen Y, Zhang Y, Zhou J. Simultaneous determination of fructose, glucose and sucrose by solid phase extraction-liquid chromatography-tandem mass spectrometry and its application to source and adulteration analysis of sucrose in tea. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2020.103730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
4
|
Fan M, Zhu J, Qian Y, Yue W, Xu Y, Zhang D, Yang Y, Gao X, He H, Wang D. Effect of purity of tea polysaccharides on its antioxidant and hypoglycemic activities. J Food Biochem 2020; 44:e13277. [PMID: 32557675 DOI: 10.1111/jfbc.13277] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 11/30/2022]
Abstract
The effects of purity of tea polysaccharides (TPS) on its five antioxidant activities and hypoglycemic activities in vitro were studied. The results showed that the higher the purity of TPS, the lower the antioxidant capacity. The purity of FTPSI is the highest (sugar content 80.72%), but its antioxidant activities were lower than those of Fujian tea polysaccharides (FTPS) and FTPSII. The antioxidant activity of tea polysaccharide is related to its protein and polyphenol content (Pearson r > .90). The protective effect of Zhejiang tea polysaccharides and FTPS on human umbilical vein endothelial cells (HUVEC) was better than that of its purified fractions. The inhibition rates of FTPSII (5 and 2 mg/ml) on α-glucosidase (32.76%) and α-amylase (-11.93%) were higher than those of FTPS and FTPSII. Purification does not change the basic structure of TPS. This study has certain reference value for the study of the antioxidant activities of TPS. Meanwhile, TPS can be used as a potential resource with hypoglycemic function. PRACTICAL APPLICATIONS: A large number of studies have shown that TPS have antioxidant activity. However, several studies considered that the antioxidant activity of TPS mainly comes from the residues of tea polyphenols. Therefore, the in vitro and cell antioxidant activities of TPS were studied in this paper. We believe that both glycoprotein and tea polyphenol are antioxidants of tea, and tea polysaccharide perform preferable effect on hypoglycemic. HUVEC cell model and four in vitro antioxidant test methods were used to study the antioxidant activities of TPS, and two enzyme inhibition activities were used to study the hypoglycemic effect of TPS, in order to provide a theoretical basis for the study of biological activity of TPS.
Collapse
Affiliation(s)
- Minghao Fan
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Junxiang Zhu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Yilin Qian
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Wei Yue
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Ying Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Dandan Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Yuqi Yang
- College of Science and Technology, Hebei Agricultural University, Cangzhou, People's Republic of China
| | - Xiaoya Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Haiyue He
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Dongfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| |
Collapse
|
5
|
Sanz V, Flórez-Fernández N, Domínguez H, Torres MD. Valorisation of Camellia sinensis branches as a raw product with green technology extraction methods. Curr Res Food Sci 2019; 2:20-24. [PMID: 32914107 PMCID: PMC7473358 DOI: 10.1016/j.crfs.2019.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
This work deals with the study of tea stalks from pruning debris using environmental friendly extraction technology to offer new healthy properties. In the manufacturing tea industry, tea trees require to be pruned every year and most of their remains are discarded as a waste with no economic value. Microwave aqueous extraction and pressurized hot water extraction process (autohydrolysis) were used to recover bioactive compounds from the tea branches. Operating at a fixed solid: liquid ratio (1:15), the effect of the maximum heating temperatures from 140 to 220 °C was studied. Liquid extracts were analysed for total phenolic, oligosaccharides, protein, mineral and heavy metals content, as well as for antioxidant capacity. The antitumoral possibilities were also determined for selected samples. The obtained results indicated that both processes could be used as an alternative to recover bioactive compounds from tea wastes, although microwave-assisted extraction allowed saving time when compared with autohydrolysis processing. The temperature exhibited a relevant effect on the total phenolic content and antioxidant capacity, decreasing with the microwave treatment and increasing with the autohydrolysis temperature. The obtained extracts could be adequate for incorporation in food and non-food fields. Tea pruning remains were valorised using green extractions by microwave (MW) and autohydolysis (AH). MW and AH were efficient technologies to recover bioactive compounds. Values above 40 mg gallic acid equivalents/g extract and 0.10 g Trolox/g extract were identified. Future applications in cosmetics, pharmacy or food industries should be explored.
Collapse
Affiliation(s)
- V Sanz
- Department of Chemical Engineering, University of Vigo (Campus Ourense), Edificio Politécnico, As Lagoas, 32004, Ourense, Spain
| | - N Flórez-Fernández
- Department of Chemical Engineering, University of Vigo (Campus Ourense), Edificio Politécnico, As Lagoas, 32004, Ourense, Spain
| | - H Domínguez
- Department of Chemical Engineering, University of Vigo (Campus Ourense), Edificio Politécnico, As Lagoas, 32004, Ourense, Spain
| | - M D Torres
- Department of Chemical Engineering, University of Vigo (Campus Ourense), Edificio Politécnico, As Lagoas, 32004, Ourense, Spain
| |
Collapse
|
6
|
Wang W, Shen M, Jiang L, Song Q, Liu S, Xie M, Xie J. Rheological behavior, microstructure characterization and formation mechanism of Mesona blumes polysaccharide gels induced by calcium ions. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Characterizations and hepatoprotective effect of polysaccharides from Mesona blumes against tetrachloride-induced acute liver injury in mice. Int J Biol Macromol 2019; 124:788-795. [DOI: 10.1016/j.ijbiomac.2018.11.260] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 11/16/2018] [Accepted: 11/26/2018] [Indexed: 12/27/2022]
|
8
|
Li Y, Chen C, Li Y, Ding Z, Shen J, Wang Y, Zhao L, Xu M. The identification and evaluation of two different color variations of tea. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:4951-4961. [PMID: 27407065 DOI: 10.1002/jsfa.7897] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 06/18/2016] [Accepted: 07/08/2016] [Indexed: 05/13/2023]
Abstract
BACKGROUND The tea plant, Camellia sinensis (L.) O. Kuntz, is a perennial woody plant widely cultivated for the production of a popular non-alcoholic beverage. To rapidly identify and evaluate two different color tea varieties (yellowish and purplish), the main phenotypic traits and quality components were tested in the present study. The metabolic profiles of tea shoots and leaves were also analyzed using liquid chromatography-tandem mass spectrometry. RESULTS The yellowish variation had a higher active level with respect to metabolism of catechins, and the contents of luteolin and kaempferol 3-α-d-glucoside were much higher compared to in the other variations. However, the purplish variation had a low content of theanine and a high content of caffeine. The contents of quercetin and kaempferol 3-α-d-galactoside were highest in purplish leaves. Moreover, the yellowish variation had the highest total quality scores for green teas and black teas, whereas the purplish variation had the highest scores for oolong teas. CONCLUSION Both the yellowish variation and the purplish variation represent excellent breeding materials and are worthy of breeding as new tea cultivars. The yellowish variation is more suitable for making high-grade green teas or black teas, whereas the purplish variation is suitable for producing fine quality oolong teas. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuchen Li
- Tea Research Institute, Qingdao Agricultural University, Qingdao 266109, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plant, Qingdao 266109, China
| | - Changsong Chen
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fujian Province 355015, China
| | - Yusheng Li
- Fruit and Tea Technology Extension Station, Jinan 250013, China
| | - Zhaotang Ding
- Tea Research Institute, Qingdao Agricultural University, Qingdao 266109, China.
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plant, Qingdao 266109, China.
| | - Jiazhi Shen
- Tea Research Institute, Qingdao Agricultural University, Qingdao 266109, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plant, Qingdao 266109, China
| | - Yu Wang
- Tea Research Institute, Qingdao Agricultural University, Qingdao 266109, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plant, Qingdao 266109, China
| | - Lei Zhao
- Tea Research Institute, Qingdao Agricultural University, Qingdao 266109, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plant, Qingdao 266109, China
| | - Meng Xu
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
9
|
Chen G, Yuan Q, Saeeduddin M, Ou S, Zeng X, Ye H. Recent advances in tea polysaccharides: Extraction, purification, physicochemical characterization and bioactivities. Carbohydr Polym 2016; 153:663-678. [PMID: 27561538 DOI: 10.1016/j.carbpol.2016.08.022] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 07/31/2016] [Accepted: 08/08/2016] [Indexed: 01/18/2023]
Abstract
Tea has a long history of medicinal and dietary use. Tea polysaccharide (TPS) is regarded as one of the main bioactive constituents of tea and is beneficial for health. Over the last decades, considerable efforts have been devoted to the studies on TPS: extraction, structural feature and bioactivity of TPS. However, it has been received much less attention compared with tea polyphenols. In order to provide new insight for further development of TPS in functional foods, in present review we summarize the recent literature, update the information and put forward future perspectives on TPS covering its extraction, purification, quantitative determination techniques as well as physicochemical characterization and bioactivities.
Collapse
Affiliation(s)
- Guijie Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Qingxia Yuan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Muhammad Saeeduddin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Shiyi Ou
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, People's Republic of China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| | - Hong Ye
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| |
Collapse
|
10
|
|
11
|
Determination of nerolidol in teas using headspace solid phase microextraction-gas chromatography. Food Chem 2013; 152:285-90. [PMID: 24444938 DOI: 10.1016/j.foodchem.2013.11.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 10/20/2013] [Accepted: 11/02/2013] [Indexed: 01/20/2023]
Abstract
Nerolidol is an important volatile compound found in tea aroma, consumption of which has been associated with good health. A novel approach for the quantitative determination of nerolidol in teas has been developed using a headspace solid phase microextraction (HS-SPME) and a gas chromatography-flame ionization detector (GC-FID). The experimental parameters relating to the extraction efficiency of the HS-SPME such as fibre types, extraction temperature, extraction time, stirring rate were investigated and optimized. The study results demonstrated that combining GC-FID with HS-SPME was an efficient and flexible extraction approach for the analysis of nerolidol in teas. Using the HS-SPME-GC-FID, the linear range of the determination of nerolidol was found to be 2.7-1360 ng g(-1) and the limit of detection was 0.3 ng g(-1). The average recoveries were in the range 78.7-106% in spiked tea samples. In addition, the generation and the content change in nerolidol at different manufacturing stages were investigated. Based on the content of nerolidol in Oolong tea samples, grade judgment for the various teas was performed.
Collapse
|
12
|
Wang Y, Shao S, Xu P, Chen H, Lin-Shiau SY, Deng YT, Lin JK. Fermentation process enhanced production and bioactivities of oolong tea polysaccharides. Food Res Int 2012. [DOI: 10.1016/j.foodres.2011.11.027] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
13
|
Yang L, Fu S, Zhu X, Zhang LM, Yang Y, Yang X, Liu H. Hyperbranched acidic polysaccharide from green tea. Biomacromolecules 2010; 11:3395-405. [PMID: 21028801 DOI: 10.1021/bm100902d] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An acidic tea polysaccharide (ALTPS), isolated from green tea ( Camellia sinensis ), was characterized as a hyperbranched glycoprotein containing the acidic heteropolysaccharide chains and the protein residues from the results of UV-vis, FTIR, one- and two-dimensional NMR, GC, GC-MS, and amino acid analyses. Solution properties of ALTPS were investigated by static and dynamic light scattering analyses and viscometry. The results indicated that the viscosity behavior of ALTPS exhibited a typical polyelectrolyte effect in distilled water, which may be avoided by adding salts. The low intrinsic viscosity of ALTPS in the solutions (8-15 mL/g) is attributed to its hyperbranched structure. By application of the polymer solution theory, it was revealed that ALTPS was present in a sphere-like conformation in the solutions as a result of the hyperbranched structure. The TEM image further confirmed that ALTPS existed in a spherical conformation in aqueous NaCl solution. Glucose was absorbed by ALTPS, which may be one of blood glucose lowering mechanisms of tea polysaccharides.
Collapse
Affiliation(s)
- Liqun Yang
- Institute of Polymer Science, School of Chemistry and Chemical Engineering, BME Center, State Key Laboratory of Optoelectronic Materials and Technologies, DSAPM Lab and PCFM Lab, Sun Yat-sen University, Guangzhou 510275, China.
| | | | | | | | | | | | | |
Collapse
|
14
|
Guo L, Du X, Lan J, Liang Q. Study on molecular structural characteristics of tea polysaccharide. Int J Biol Macromol 2010; 47:244-9. [DOI: 10.1016/j.ijbiomac.2010.03.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Accepted: 03/30/2010] [Indexed: 11/16/2022]
|
15
|
ZHOU YIBIN, WANG DONGFENG, WAN XIAOCHUN, ZHANG LI, DU XIANFENG, HU WEISHENG. EFFECT OF TEA POLYSACCHARIDE ADDITION ON THE PROPERTIES OF BREAD MADE FROM TWO FLOURS. J FOOD PROCESS PRES 2009. [DOI: 10.1111/j.1745-4549.2008.00312.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Nkhili E, Tomao V, El Hajji H, El Boustani ES, Chemat F, Dangles O. Microwave-assisted water extraction of green tea polyphenols. PHYTOCHEMICAL ANALYSIS : PCA 2009; 20:408-415. [PMID: 19609884 DOI: 10.1002/pca.1141] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
INTRODUCTION Green tea, a popular drink with beneficial health properties, is a rich source of specific flavanols (polyphenols). There is a special interest in the water extraction of green tea polyphenols since the composition of the corresponding extracts is expected to reflect the one of green tea infusions consumed worldwide. OBJECTIVE To develop a microwave-assisted water extraction (MWE) of green tea polyphenols. METHODOLOGY MWE of green tea polyphenols has been investigated as an alternative to water extraction under conventional heating (CWE). The experimental conditions were selected after consideration of both temperature and extraction time. The efficiency and selectivity of the process were determined in terms of extraction time, total phenolic content, chemical composition (HPLC-MS analysis) and antioxidant activity of the extracts. RESULTS By MWE (80 degrees C, 30 min), the flavanol content of the extract reached 97.46 (+/- 0.08) mg of catechin equivalent/g of green tea extract, vs. only 83.06 (+/- 0.08) by CWE (80 degrees C, 45 min). In particular, the concentration of the most bioactive flavanol EGCG was 77.14 (+/- 0.26) mg of catechin equivalent/g of green tea extract obtained by MWE, vs 64.18 (+/- 0.26) mg/g by CWE. CONCLUSION MWE appears more efficient than CWE at both 80 and 100 degrees C, particularly for the extraction of flavanols and hydroxycinnamic acids. Although MWE at 100 degrees C typically affords higher yields in total phenols, MWE at 80 degrees C appears more convenient for the extraction of the green tea-specific and chemically sensitive flavanols.
Collapse
Affiliation(s)
- Ezzohra Nkhili
- Université Cadi Ayyad, Faculté des Sciences Semlalia, Marrakech, Morocco
| | | | | | | | | | | |
Collapse
|