1
|
Bork LV, Baumann M, Stobernack T, Rohn S, Kanzler C. Colorants and Antioxidants Deriving from Methylglyoxal and Heterocyclic Maillard Reaction Intermediates. Antioxidants (Basel) 2023; 12:1788. [PMID: 37760091 PMCID: PMC10525816 DOI: 10.3390/antiox12091788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
The Maillard reaction is well known for producing antioxidant compounds alongside colored substances. Low-molecular-weight antioxidant intermediates such as maltol (MAL) or norfuraneol (NF) are well described, but it is still unclear which of these Maillard intermediates are the precursors of antioxidant and colored melanoidins-the so-called late stage Maillard reaction products. This study aimed to provide novel insights into the correlation between browning potential and antioxidant properties of reaction products formed during the heat treatment of prominent Maillard reaction intermediates. It was achieved by the incubation of binary reaction systems composed of methylglyoxal (MGO) or NF in combination with furfural (FF), MAL, and pyrrole-2-carbaldehyde (PA) at pH 5 and 130 °C for up to 120 min. Overall, it could be shown that the formation of colored products in the binary NF reaction systems was more efficient compared to those of MGO. This was reflected in an increased browning intensity of up to 400% and a lower conversion rate of NF compared to MGO. The colorants formed by NF and FF or PA (~0.34 kDa and 10-100 kDa) were also found to exhibit higher molecular weights compared to the analogue products formed in the MGO incubations (<0.34 kDa and 10-100 kDa). The incorporation of NF into these heterogenous products with FF and PA resulted in the preservation of the initial antioxidant properties of NF (p < 0.05), whereas no antioxidant products were formed after the incubation of MGO.
Collapse
Affiliation(s)
- Leon Valentin Bork
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany; (M.B.); (S.R.)
| | - Maximilian Baumann
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany; (M.B.); (S.R.)
| | - Tobias Stobernack
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8–10, 10589 Berlin, Germany;
| | - Sascha Rohn
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany; (M.B.); (S.R.)
| | - Clemens Kanzler
- Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany; (M.B.); (S.R.)
| |
Collapse
|
2
|
Food-borne melanoidin-based nanozyme mimics natural peroxidase for efficient catalytic disinfection. Colloids Surf B Biointerfaces 2022; 220:112948. [DOI: 10.1016/j.colsurfb.2022.112948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022]
|
3
|
Omari IO, Charnock HM, Fugina AL, Thomson EL, McIndoe JS. Magnesium-Accelerated Maillard Reactions Drive Differences in Adjunct and All-Malt Brewing. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2020. [DOI: 10.1080/03610470.2020.1795437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Isaac O. Omari
- Department of Chemistry, University of Victoria, Victoria, BC, Canada
| | | | - Alexa L. Fugina
- Department of Chemistry, University of Victoria, Victoria, BC, Canada
| | | | - J. Scott McIndoe
- Department of Chemistry, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
4
|
Zhang M, Wang Z, Li P, Zhang H, Xie L. Bio-refractory dissolved organic matter and colorants in cassava distillery wastewater: Characterization, coagulation treatment and mechanisms. CHEMOSPHERE 2017; 178:259-267. [PMID: 28334666 DOI: 10.1016/j.chemosphere.2017.03.065] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 03/14/2017] [Accepted: 03/16/2017] [Indexed: 06/06/2023]
Abstract
An important portion of organic matter and colorants still remain in the biologically treated distillery wastewater, leaving the dark brown and odorous downstream with the heavy loading of chemical oxygen demand and the potential of forming disinfection byproducts. However, those bio-recalcitrant colorants have not been clearly recognized. The current study investigated the features of the bio-refractory organic matter and colorants in a typical distillery effluent, cassava distillery wastewater; special attention was paid to their change and behaviors in the coagulation treatment following the bio-processes. The wastewater analyses denoted that the fraction of high molecular weight (1-50 kDa and >50 kDa) became predominant after the anaerobic-aerobic processes. Importantly, the lignin breakdown products, melanoidins and lignin phenols were confirmed to be the leading colored components, according to the parallel factor analysis of fluorescence excitation-emission matrixes results. Compared with lignin phenols, the former two types of colorants exhibited stronger bio-refractory activity and resulted in smaller color reduction after the aerobic treatment. Neither advanced oxidation nor adsorption could perform efficiently as post-treatment for decolorization in this study. Nevertheless, high removal of color and dissolved organic matter (∼94.0% and ∼78.3%, respectively) could be achieved by the FeCl3-involved coagulation under the optimal conditions. The ferric coagulant was found to preferably interact with the aromatic compounds (such as lignin derivatives) and melanoidins via either surface complexation or electric charge neutralization, or both. The findings presented herein might provide an insight into the evaluation of bio-refractory organic colorants and the Fe(III)-involved decolorization mechanisms of ethanol production wastewaters.
Collapse
Affiliation(s)
- Ming Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Institute of Biofilm Technology, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Zhou Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Institute of Biofilm Technology, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Penghui Li
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea
| | - Hua Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Institute of Biofilm Technology, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China
| | - Li Xie
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Institute of Biofilm Technology, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China.
| |
Collapse
|
5
|
Moran-Salazar RG, Sanchez-Lizarraga AL, Rodriguez-Campos J, Davila-Vazquez G, Marino-Marmolejo EN, Dendooven L, Contreras-Ramos SM. Utilization of vinasses as soil amendment: consequences and perspectives. SPRINGERPLUS 2016; 5:1007. [PMID: 27441131 PMCID: PMC4937036 DOI: 10.1186/s40064-016-2410-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 05/24/2016] [Indexed: 11/10/2022]
Abstract
Vinasses are a residual liquid generated after the production of beverages, such as mezcal and tequila, from agave (Agave L.), sugarcane (Saccharum officinarum L.) or sugar beet (Beta vulgaris L.). These effluents have specific characteristics such as an acidic pH (from 3.9 to 5.1), a high chemical oxygen demand (50,000-95,000 mg L(-1)) and biological oxygen demand content (18,900-78,300 mg L(-1)), a high total solids content (79,000 and 37,500 mg L(-1)), high total volatile solids 79,000 and 82,222 mg L(-1), and K(+) (10-345 g L(-1)) content. Vinasses are most commonly discarded onto soil. Irrigation of soil with vinasses, however, may induce physical, chemical and biochemical changes and affect crop yields. Emission of greenhouse gases (GHG), such as carbon dioxide, nitrous oxide and methane, might increase from soils irrigated with vinasses. An estimation of GHG emission from soil irrigated with vinasses is given and discussed in this review.
Collapse
Affiliation(s)
- R G Moran-Salazar
- Unidad de Tecnología Ambiental, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), CP 44270 Guadalajara, Jalisco Mexico
| | - A L Sanchez-Lizarraga
- Unidad de Tecnología Ambiental, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), CP 44270 Guadalajara, Jalisco Mexico
| | - J Rodriguez-Campos
- Unidad de Servicios Analíticos y Metrológicos, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), CP 44270 Guadalajara, Jalisco Mexico
| | - G Davila-Vazquez
- Unidad de Tecnología Ambiental, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), CP 44270 Guadalajara, Jalisco Mexico
| | - E N Marino-Marmolejo
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), CP 44270 Guadalajara, Jalisco Mexico
| | - L Dendooven
- Laboratorio de Ecología de Suelos, ABACUS, Cinvestav, Mexico
| | - S M Contreras-Ramos
- Unidad de Tecnología Ambiental, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), CP 44270 Guadalajara, Jalisco Mexico
| |
Collapse
|
6
|
High molecular weight compounds generated by roasting barley malt are pro-oxidants in metal-catalyzed oxidations. Eur Food Res Technol 2016. [DOI: 10.1007/s00217-016-2655-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Monente C, Bravo J, Vitas AI, Arbillaga L, De Peña MP, Cid C. Coffee and spent coffee extracts protect against cell mutagens and inhibit growth of food-borne pathogen microorganisms. J Funct Foods 2015. [DOI: 10.1016/j.jff.2014.12.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
8
|
Carvalho DO, Correia E, Lopes L, Guido LF. Further insights into the role of melanoidins on the antioxidant potential of barley malt. Food Chem 2014; 160:127-33. [DOI: 10.1016/j.foodchem.2014.03.074] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/08/2014] [Accepted: 03/13/2014] [Indexed: 01/11/2023]
|
9
|
Bravo J, Arbillaga L, de Peña MP, Cid C. Antioxidant and genoprotective effects of spent coffee extracts in human cells. Food Chem Toxicol 2013; 60:397-403. [DOI: 10.1016/j.fct.2013.08.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/24/2013] [Accepted: 08/03/2013] [Indexed: 12/26/2022]
|