1
|
Monday Abel Otache, Duru RU, Ozioma A, Abayeh JO. Catalytic Methods for the Synthesis of Sugar Esters. CATALYSIS IN INDUSTRY 2022. [DOI: 10.1134/s2070050422010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
2
|
Lu Y, Maria Vos RD, Zhang Y, Zhang M, Liu Y, Fu C, Liu SQ, Huang D. The degradation kinetics and mechanism of moringin in aqueous solution and the cytotoxicity of degraded products. Food Chem 2021; 364:130424. [PMID: 34182363 DOI: 10.1016/j.foodchem.2021.130424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/29/2021] [Accepted: 06/17/2021] [Indexed: 12/17/2022]
Abstract
In this work, we investigated the degradation of moringin (4-[(α-l-rhamnosyloxy)benzyl]-isothiocyanate), a major bioactive isothiocyanate (ITC) found in moringa seeds (Moringa oleifera Lam), at various food processing conditions. Moringin degrades rapidly to several water-soluble products via a pseudo-first-order kinetics. By analyzing the reaction products, the degradation mechanism was found to be through hydrolyzing to (A) 1-O-(4-hydroxymethylphenyl) α-l-rhamnopyranoside (rhamnobenzyl alcohol RBA) or (B) rhamnobenzylamine. The formed amine further reacts with moringin to form N,N'-bis{4-[(α-l-rhamnosyloxy)benzyl]}thiourea (di-rhamnobenzyl thiourea, DRBTU). In addition, moringin isomerizes to 4-[(α-l-rhamnosyloxy)benzyl]thiocyanate (RBTC), which further reacts with moringin to form S,N-bis{4-[(α-l-rhamnosyloxy)benzyl]}-dithiocarbamate (DRBDTC). Furthermore, pH was found to have an effect on the degradation of moringin. RBA and RBTC were major degraded products in neutral and acidic conditions while thiourea (DRBTU) was in alkaline condition. Although moringin showed higher cytotoxicity to cancer cells, its degraded products showed very weak or no activities, suggesting that the isothiocyanate group of ITCs is essential for their cancer chemoprevention activities.
Collapse
Affiliation(s)
- Yuyun Lu
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| | - Romy Dorothea Maria Vos
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - Yuyu Zhang
- Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Molan Zhang
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| | - Yunjiao Liu
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, Singapore 117542, Singapore
| | - Caili Fu
- National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Jiangsu 215123, China
| | - Shao Quan Liu
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Jiangsu 215123, China
| | - Dejian Huang
- Department of Food Science and Technology, Science Drive 2, Faculty of Science, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Jiangsu 215123, China.
| |
Collapse
|
3
|
The Effectively Simultaneous Production of Cello-oligosaccharide and Glucose Mono-decanoate from Lignocellulose by Enzymatic Esterification. Appl Biochem Biotechnol 2020; 192:600-615. [PMID: 32500429 DOI: 10.1007/s12010-020-03356-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/22/2020] [Indexed: 10/24/2022]
Abstract
Cello-oligosaccharide has drawn an increasing attention as the nutritional ingredients of dietary supplements, whose quality is affected by the concentration of monosaccharide. In the present study, an effective process was developed for the simultaneous production of cello-oligosaccharide and glucose mono-decanoate from lignocellulose by enzymatic esterification. During the process, the excessive glucose in cello-oligosaccharide was converted into glucose mono-decanoate, which is a well-known biodegradable nonionic surfactant. The filter paper was initially used as the model to investigate the feasibility of the process, in which the purity of resultant cello-oligosaccharide was increased from 33.3% to 74.3%, simultaneously producing glucose mono-decanoate with a purity of 92.3%. Further verification of 3 kinds of lignocelluloses (switchgrass, cornstalk, and reed) also indicated a good performance of the process. The present process provided an effective strategy to increase the purity of resultant cello-oligosaccharide with the simultaneous production of high value-added products of sugar monoester. Graphical Abstract Simultaneous production of cello-oligosaccharide and glucose mono-decanoate from lignocellulose.
Collapse
|
4
|
Li X, Hai YW, Ma D, Chen J, Banwell MG, Lan P. Fatty acid ester surfactants derived from raffinose: Synthesis, characterization and structure-property profiles. J Colloid Interface Sci 2019; 556:616-627. [DOI: 10.1016/j.jcis.2019.08.070] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/18/2019] [Accepted: 08/19/2019] [Indexed: 01/15/2023]
|
5
|
Solvent-Free Lipase-Catalyzed Synthesis of Technical-Grade Sugar Esters and Evaluation of Their Physicochemical and Bioactive Properties. Catalysts 2016. [DOI: 10.3390/catal6060078] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
6
|
Jiang C, Lu Y, Li Z, Li C, Yan R. Enzymatic Synthesis of l
-Ascorbyl Fatty Acid Esters Under Ultrasonic Irradiation and Comparison of Their Antioxidant Activity and Stability. J Food Sci 2016; 81:C1370-7. [PMID: 27100741 DOI: 10.1111/1750-3841.13317] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 03/11/2016] [Accepted: 03/22/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Chen Jiang
- Dept. of Food Science and Engineering, College of Science and Engineering; Jinan Univ; Number 601 Huangpu Road West Guangzhou 510632 China
| | - Yuyun Lu
- Food Science and Technology Programme, Science Drive 2; Dept. of Chemistry, Faculty of Science, Natl. Univ. of Singapore; Singapore 117546 Singapore
| | - Zhuo Li
- China Resources C'estbon Food and Beverage (Shenzhen) Co. Ltd; 22 Langshan Road Technology Park Nanshan Dist Shenzhen 518057 China
| | - Cunzhi Li
- Dept. of Food Science and Engineering, College of Science and Engineering; Jinan Univ; Number 601 Huangpu Road West Guangzhou 510632 China
| | - Rian Yan
- Dept. of Food Science and Engineering, College of Science and Engineering; Jinan Univ; Number 601 Huangpu Road West Guangzhou 510632 China
| |
Collapse
|
7
|
Ye R, Hayes DG, Burton R. Effects of Particle Size of Sucrose Suspensions and Pre-incubation of Enzymes on Lipase-Catalyzed Synthesis of Sucrose Oleic Acid Esters. J AM OIL CHEM SOC 2014. [DOI: 10.1007/s11746-014-2537-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Lu Y, Yan R, Ma X, Wang Y, Sun Y, Luo Z. Enzymatic hydrolysis preparation of mono-O-lauroylsucrose via a mono-O-lauroylraffinose intermediate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:9412-9420. [PMID: 24050752 DOI: 10.1021/jf4024596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
1'-O-Lauroylsucrose and 6'-O-lauroylsucrose were formed through hydrolysis of the C-6″ galactose group of 1'-O-lauroylraffinose and 6'-O-lauroylraffinose, respectively, in the presence of α-galactosidase. The enzymatic hydrolysis of 1'-O-lauroylraffinose and 6'-O-lauroylraffinose is discussed in detail. Acetic acid-sodium acetate was chosen as the buffer solution of the enzymatic hydrolysis reaction. The optimum conditions for the enzymatic hydrolysis reaction were as follows: buffer solution, pH 3.8; enzymatic time, 48 h; and enzymatic temperature, 37 °C. Under the optimal process conditions, the efficiency of α-galactosidase was ca. 82.6%. The isomers were fully compared in solubility, hydrophile-lipophile balance (HLB) values, critical micelle concentration (CMC), and thermal stability. The results showed that all lauroylsucrose isomers have similar solubilities in polar solvent, HLB values, CMC values, and thermal stabilities.
Collapse
Affiliation(s)
- Yuyun Lu
- Department of Food Science and Engineering, College of Science and Engineering, Jinan University , Number 601 Huangpu Road West, Guangzhou 510632, People's Republic of China
| | | | | | | | | | | |
Collapse
|