1
|
Świątek M, Antosik A, Kochanowska D, Jeżowski P, Smarzyński K, Tomczak A, Kowalczewski PŁ. The potential for the use of leghemoglobin and plant ferritin as sources of iron. Open Life Sci 2023; 18:20220805. [PMID: 38152583 PMCID: PMC10751998 DOI: 10.1515/biol-2022-0805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 12/29/2023] Open
Abstract
Iron is an essential component for the body, but it is also a major cause for the development of many diseases such as cancer, cardiovascular diseases, and autoimmune diseases. It has been suggested that a diet rich in meat products, especially red meat and highly processed products, constitute a nutritional model that increases the risk of developing. In this context, it is indicated that people on an elimination diet (vegetarians and vegans) may be at risk of deficiencies in iron, because this micronutrient is found mainly in foods of animal origin and has lower bioavailability in plant foods. This article reviews the knowledge on the use of leghemoglobin and plant ferritin as sources of iron and discusses their potential for use in vegetarian and vegan diets.
Collapse
Affiliation(s)
- Michał Świątek
- Ekosystem-Nature’s Heritage Association, Institute of Microbial Technologies, Al. NSZZ Solidarność 9, 62-700Turek, Poland
| | - Adrianna Antosik
- Ekosystem-Nature’s Heritage Association, Institute of Microbial Technologies, Al. NSZZ Solidarność 9, 62-700Turek, Poland
| | - Dominika Kochanowska
- Ekosystem-Nature’s Heritage Association, Institute of Microbial Technologies, Al. NSZZ Solidarność 9, 62-700Turek, Poland
| | - Paweł Jeżowski
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, 4 Berdychowo St., 60-965Poznań, Poland
- InnPlantFood Research Group, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624Poznań, Poland
| | - Krzysztof Smarzyński
- InnPlantFood Research Group, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624Poznań, Poland
| | - Aneta Tomczak
- Department of Biochemistry and Food Analysis, Poznań University of Life Sciences, 48 Mazowiecka St., 60-623Poznań, Poland
| | - Przemysław Łukasz Kowalczewski
- InnPlantFood Research Group, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624Poznań, Poland
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, 31 Wojska Polskiego St., 60-624Poznań, Poland
| |
Collapse
|
2
|
Abiotic stress treatment to improve the iron bio-availability in cereal grains and its validation in biscuits. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01657-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
3
|
Li R, Li Z, Wu N, Tan B. Effect of pre‐treatment on the functional properties of germinated whole grains: A review. Cereal Chem 2021. [DOI: 10.1002/cche.10500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ren Li
- Academy of National Food and Strategic Reserves Administration Beijing China
- Department of Food and Engineering College of Food Heilongjiang Bayi Agricultural University Heilongjiang, Daqing China
| | - Zhi‐Jiang Li
- Department of Food and Engineering College of Food Heilongjiang Bayi Agricultural University Heilongjiang, Daqing China
| | - Na‐Na Wu
- Academy of National Food and Strategic Reserves Administration Beijing China
| | - Bin Tan
- Academy of National Food and Strategic Reserves Administration Beijing China
| |
Collapse
|
4
|
|
5
|
Naveen Kumar JK, Muthukumar SP, Prabhasankar P. The potential of the iron concentrated germinated wheat in wheat flour fortification: an alternative to the conventional expensive iron fortification. Journal of Food Science and Technology 2019; 56:2038-2048. [PMID: 30996438 DOI: 10.1007/s13197-019-03680-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/20/2019] [Accepted: 02/24/2019] [Indexed: 11/26/2022]
Abstract
Investigation of the effect of the Fe abiotic stress on the germination rate, iron accumulation, root and shoot elongation of wheat (Triticum aestivum) was carried out. The grains were exposed to different experimental concentrations of ferrous sulfate (FeSO4) (0-15 mM). The effect of the treatment on the shoot and root elongation of the seeds were reported. There is a linear relationship between the treatment and the inhibition of shoot elongation. The half-inhibition dose (ID50) of FeSO4 on inhibition of shoot elongation was 7.3 mM. Each treatment groups (3-15 mM) were used to fortify the wheat flour at 0.1 mg Fe/g. The effect of fortification on rheology (farinograph, extensograph, and amylograph), quality of pasta and iron bioavailability was studied. The pasta cooking properties, texture and sensory properties of 12 and 15 mM composite pasta were equally acceptable as wheat without fortification, or NaFeEDTA fortified pasta. The iron dialysability of 3-15 mM composite pasta was similar to the NaFeEDTA fortified pasta. The iron bioavailability (in vivo) of 15 mM group based pasta was evaluated in the anemic rats. The pasta at 4% (Fe 0.026 mg/g) in iron-deficient diet fed to anemic rats for 2 weeks showed percentage iron absorption (PIA) and hemoglobin regeneration efficiency (HRE) of 85.3% and 44.4% respectively which is higher than the NaFeEDTA. In conclusion, iron-fortified pasta is the promising food fortificant with more iron bioavailability in the prevention of iron deficiency anemia.
Collapse
Affiliation(s)
- J K Naveen Kumar
- 1Department of Flour Milling Baking and Confectionery Technology, CSIR-Central Food Technological Research Institute, Mysore, 570 020 India
- 2Academy of Science and Innovative Research (AcSIR), CSIR-Central Food Technological Research Institute, Mysore, 570 020 India
| | - S P Muthukumar
- 2Academy of Science and Innovative Research (AcSIR), CSIR-Central Food Technological Research Institute, Mysore, 570 020 India
- 3Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, 570 020 India
| | - P Prabhasankar
- 1Department of Flour Milling Baking and Confectionery Technology, CSIR-Central Food Technological Research Institute, Mysore, 570 020 India
- 2Academy of Science and Innovative Research (AcSIR), CSIR-Central Food Technological Research Institute, Mysore, 570 020 India
| |
Collapse
|
6
|
de Mejia EG, Aguilera-Gutiérrez Y, Martin-Cabrejas MA, Mejia LA. Industrial processing of condiments and seasonings and its implications for micronutrient fortification. Ann N Y Acad Sci 2015; 1357:8-28. [DOI: 10.1111/nyas.12869] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Elvira González de Mejia
- Department of Food Science and Human Nutrition; University of Illinois at Urbana-Champaign; Urbana Illinois
| | - Yolanda Aguilera-Gutiérrez
- Instituto de Investigación de Ciencias de la Alimentación (CIAL); Facultad de Ciencias, Universidad Autónoma de Madrid; Madrid Spain
| | - Maria Angeles Martin-Cabrejas
- Instituto de Investigación de Ciencias de la Alimentación (CIAL); Facultad de Ciencias, Universidad Autónoma de Madrid; Madrid Spain
| | - Luis A. Mejia
- Department of Food Science and Human Nutrition; University of Illinois at Urbana-Champaign; Urbana Illinois
| |
Collapse
|
7
|
Zielińska-Dawidziak M. Plant ferritin--a source of iron to prevent its deficiency. Nutrients 2015; 7:1184-201. [PMID: 25685985 PMCID: PMC4344583 DOI: 10.3390/nu7021184] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 02/03/2015] [Indexed: 12/20/2022] Open
Abstract
Iron deficiency anemia affects a significant part of the human population. Due to the unique properties of plant ferritin, food enrichment with ferritin iron seems to be a promising strategy to prevent this malnutrition problem. This protein captures huge amounts of iron ions inside the apoferritin shell and isolates them from the environment. Thus, this iron form does not induce oxidative change in food and reduces the risk of gastric problems in consumers. Bioavailability of ferritin in human and animal studies is high and the mechanism of absorption via endocytosis has been confirmed in cultured cells. Legume seeds are a traditional source of plant ferritin. However, even if the percentage of ferritin iron in these seeds is high, its concentration is not sufficient for food fortification. Thus, edible plants have been biofortified in iron for many years. Plants overexpressing ferritin may find applications in the development of bioactive food. A crucial achievement would be to develop technologies warranting stability of ferritin in food and the digestive tract.
Collapse
Affiliation(s)
- Magdalena Zielińska-Dawidziak
- Department of Food Biochemistry and Analysis, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, 60-623 Poznań, Poland.
| |
Collapse
|