1
|
Wang D, Zhang H, Meng L, Tan X, Liu R, Gao Q, Wu Y, Zhu Y, Ren X, Li Y, Kong Q. Exogenous Nitric Oxide Induces Pathogenicity of Alternaria alternata on Huangguan Pear Fruit by Regulating Reactive Oxygen Species Metabolism and Cell Wall Modification. J Fungi (Basel) 2024; 10:726. [PMID: 39452678 PMCID: PMC11508668 DOI: 10.3390/jof10100726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Black spot caused by Alternaria alternata is one of the most common postharvest diseases in fruit and vegetables. A comprehensive investigation into its pathogenicity mechanism is imperative in order to propose a targeted and effective control strategy. The effect of nitric oxide (NO) on the pathogenicity of A. alternata and its underlying mechanism was studied. The results showed that treatment with 0.5 mM L-1 of sodium nitroprusside (SNP) (NO donor) increased the lesion diameter of A. alternata in vivo and in vitro, which was 22.8% and 13.2% higher than that of the control, respectively. Exogenous NO treatment also induced endogenous NO accumulation by activating nitric oxide synthase (NOS). In addition, NO triggered an increase in reactive oxygen species (ROS) levels. NO enhanced activities and gene expression levels of NADPH oxidase (NOX), superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione peroxidase (GPX), and glutathione reductase (GR). Moreover, NO stimulated cell wall degrading enzymes by activating the corresponding gene expression in vivo and in vitro. These results suggested that exogenous NO promoted the pathogenicity of A. alternata by inducing ROS accumulation and activating antioxidants and cell wall degrading enzymes. The present results could establish a theoretical foundation for the targeted control of the black spot disease in pear fruit.
Collapse
Affiliation(s)
- Di Wang
- Xi’an Key Laboratory of Characteristic Fruit Storage and Preservation, Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (D.W.); (H.Z.); (L.M.); (X.T.); (R.L.); (Q.G.); (X.R.)
| | - Haijue Zhang
- Xi’an Key Laboratory of Characteristic Fruit Storage and Preservation, Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (D.W.); (H.Z.); (L.M.); (X.T.); (R.L.); (Q.G.); (X.R.)
| | - Lingkui Meng
- Xi’an Key Laboratory of Characteristic Fruit Storage and Preservation, Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (D.W.); (H.Z.); (L.M.); (X.T.); (R.L.); (Q.G.); (X.R.)
| | - Xinyu Tan
- Xi’an Key Laboratory of Characteristic Fruit Storage and Preservation, Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (D.W.); (H.Z.); (L.M.); (X.T.); (R.L.); (Q.G.); (X.R.)
| | - Rong Liu
- Xi’an Key Laboratory of Characteristic Fruit Storage and Preservation, Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (D.W.); (H.Z.); (L.M.); (X.T.); (R.L.); (Q.G.); (X.R.)
| | - Qingchao Gao
- Xi’an Key Laboratory of Characteristic Fruit Storage and Preservation, Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (D.W.); (H.Z.); (L.M.); (X.T.); (R.L.); (Q.G.); (X.R.)
| | - Yan Wu
- Xi’an Key Laboratory of Characteristic Fruit Storage and Preservation, Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (D.W.); (H.Z.); (L.M.); (X.T.); (R.L.); (Q.G.); (X.R.)
| | - Yuhan Zhu
- Xi’an Key Laboratory of Characteristic Fruit Storage and Preservation, Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (D.W.); (H.Z.); (L.M.); (X.T.); (R.L.); (Q.G.); (X.R.)
| | - Xueyan Ren
- Xi’an Key Laboratory of Characteristic Fruit Storage and Preservation, Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (D.W.); (H.Z.); (L.M.); (X.T.); (R.L.); (Q.G.); (X.R.)
| | - Yongcai Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Qingjun Kong
- Xi’an Key Laboratory of Characteristic Fruit Storage and Preservation, Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (D.W.); (H.Z.); (L.M.); (X.T.); (R.L.); (Q.G.); (X.R.)
| |
Collapse
|
2
|
Tian Y, Tian X, Li T, Wang W. Overview of the effects and mechanisms of NO and its donors on biofilms. Crit Rev Food Sci Nutr 2023:1-20. [PMID: 37942962 DOI: 10.1080/10408398.2023.2279687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Microbial biofilm is undoubtedly a challenging problem in the food industry. It is closely associated with human health and life, being difficult to remove and antibiotic resistance. Therefore, an alternate method to solve these problems is needed. Nitric oxide (NO) as an antimicrobial agent, has shown great potential to disrupt biofilms. However, the extremely short half-life of NO in vivo (2 s) has facilitated the development of relatively more stable NO donors. Recent studies reported that NO could permeate biofilms, causing damage to cellular biomacromolecules, inducing biofilm dispersion by quorum sensing (QS) pathway and reducing intracellular bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) levels, and significantly improving the bactericidal effect without drug resistance. In this review, biofilm hazards and formation processes are presented, and the characteristics and inhibitory effects of NO donors are carefully discussed, with an emphasis on the possible mechanisms of NO resistance to biofilms and some advanced approaches concerning the remediation of NO donor deficiencies. Moreover, the future perspectives, challenges, and limitations of NO donors were summarized comprehensively. On the whole, this review aims to provide the application prospects of NO and its donors in the food industry and to make reliable choices based on these available research results.
Collapse
Affiliation(s)
- Yanan Tian
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Xiaojing Tian
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Teng Li
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| | - Wenhang Wang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, China
| |
Collapse
|
3
|
Ren Y, Yan T, Hu C, Liu D, He J. Exogenous Nitric Oxide-Induced Postharvest Gray Spot Disease Resistance in Loquat Fruit and Its Possible Mechanism of Action. Int J Mol Sci 2023; 24:ijms24054369. [PMID: 36901799 PMCID: PMC10001853 DOI: 10.3390/ijms24054369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
The effectiveness of nitric oxide (NO) for control of grey spot rot cause by Pestalotiopsis eriobotryfolia in harvested loquat fruit and its probable mechanisms have been investigated. The results showed that NO donor sodium nitroprusside (SNP) did not evidently inhibit mycelial growth and spore germination of P. eriobotryfolia, but resulted in a low disease incidence and small lesion diameter. SNP resulted in a higher hydrogen peroxide (H2O2) level in the early stage after inoculation and a lower H2O2 level in the latter period by regulating the activities of superoxide dismutase, ascorbate peroxidase and catalase. At the same time, SNP enhanced the activities of chitinase, β-1,3-glucanase, phenylalanine ammonialyase, polyphenoloxidase, and total phenolic content in loquat fruit. However, SNP treatment inhibited the activities of cell wall-modifying enzymes and the modification of cell wall components. Our results suggested that NO treatment might have potential in reducing grey spot rot of postharvest loquat fruit.
Collapse
Affiliation(s)
- Yanfang Ren
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
- College of Agriculture, Guizhou University, Guiyang 550025, China
- Correspondence: (Y.R.); (J.H.)
| | - Tengyu Yan
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Chunmei Hu
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Dong Liu
- College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Junyu He
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
- College of Agriculture, Guizhou University, Guiyang 550025, China
- Correspondence: (Y.R.); (J.H.)
| |
Collapse
|
4
|
Anta-Fernández F, Santander-Gordón D, Becerra S, Santamaría R, Díaz-Mínguez JM, Benito EP. Nitric Oxide Metabolism Affects Germination in Botrytis cinerea and Is Connected to Nitrate Assimilation. J Fungi (Basel) 2022; 8:jof8070699. [PMID: 35887455 PMCID: PMC9324006 DOI: 10.3390/jof8070699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Abstract
Nitric oxide regulates numerous physiological processes in species from all taxonomic groups. Here, its role in the early developmental stages of the fungal necrotroph Botrytis cinerea was investigated. Pharmacological analysis demonstrated that NO modulated germination, germ tube elongation and nuclear division rate. Experimental evidence indicates that exogenous NO exerts an immediate but transitory negative effect, slowing down germination-associated processes, and that this effect is largely dependent on the flavohemoglobin BCFHG1. The fungus exhibited a “biphasic response” to NO, being more sensitive to low and high concentrations than to intermediate levels of the NO donor. Global gene expression analysis in the wild-type and ΔBcfhg1 strains indicated a situation of strong nitrosative and oxidative stress determined by exogenous NO, which was much more intense in the mutant strain, that the cells tried to alleviate by upregulating several defense mechanisms, including the simultaneous upregulation of the genes encoding the flavohemoglobin BCFHG1, a nitronate monooxygenase (NMO) and a cyanide hydratase. Genetic evidence suggests the coordinated expression of Bcfhg1 and the NMO coding gene, both adjacent and divergently arranged, in response to NO. Nitrate assimilation genes were upregulated upon exposure to NO, and BCFHG1 appeared to be the main enzymatic system involved in the generation of the signal triggering their induction. Comparative expression analysis also showed the influence of NO on other cellular processes, such as mitochondrial respiration or primary and secondary metabolism, whose response could have been mediated by NmrA-like domain proteins.
Collapse
Affiliation(s)
- Francisco Anta-Fernández
- Institute for Agribiotechnology Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, 37008 Salamanca, Spain; (F.A.-F.); (S.B.); (J.M.D.-M.)
| | - Daniela Santander-Gordón
- Facultad de Ingeniería y Ciencias Aplicadas (FICA), Carrera de Ingeniería en Biotecnología, Universidad de las Américas (UDLA), Quito 170513, Ecuador;
| | - Sioly Becerra
- Institute for Agribiotechnology Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, 37008 Salamanca, Spain; (F.A.-F.); (S.B.); (J.M.D.-M.)
| | - Rodrigo Santamaría
- Department of Computer Science, University of Salamanca, 37008 Salamanca, Spain;
| | - José María Díaz-Mínguez
- Institute for Agribiotechnology Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, 37008 Salamanca, Spain; (F.A.-F.); (S.B.); (J.M.D.-M.)
| | - Ernesto Pérez Benito
- Institute for Agribiotechnology Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, 37008 Salamanca, Spain; (F.A.-F.); (S.B.); (J.M.D.-M.)
- Correspondence:
| |
Collapse
|
5
|
Zhang Y, Pan L, Fang Y, Wang X, Gu S. Inhibition effect of preservatives or disinfectants on
F. concentricum
from postharvest asparagus (
Asparagus officinalis
L.) spear in vitro and in vivo. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Yuanyuan Zhang
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou PR China
| | - Lixiu Pan
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou PR China
| | - Yonggang Fang
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou PR China
| | - Xiangyang Wang
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou PR China
| | - Shuang Gu
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou PR China
| |
Collapse
|
6
|
Ren Y, Xue Y, Tian D, Zhang L, Xiao G, He J. Improvement of Postharvest Anthracnose Resistance in Mango Fruit by Nitric Oxide and the Possible Mechanisms Involved. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:15460-15467. [PMID: 33320657 DOI: 10.1021/acs.jafc.0c04270] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The anthracnose rot of postharvest mango fruit is a devastating fungal disease often resulting in tremendous quality deterioration and postharvest losses. Nitric oxide (NO), as an important signaling molecule, is involved in the responses to postharvest fruit diseases. In the present study, the effectiveness of NO donor sodium nitroprusside (SNP) to prevent anthracnose of "Tainong" mango fruit caused by Colletotrichum gloeosporioides was evaluated through in vivo and in vitro tests. Results from in vivo test showed that SNP treatment effectively inhibited the lesion diameter and disease incidence on inoculated mango fruit during storage. SNP treatment could regulate hydrogen peroxide levels by reinforcing the activities of catalase, peroxidase, superoxide dismutase, and ascorbate peroxidase. Furthermore, SNP elevated the accumulation of lignin, total phenolics, anthocyanin, and flavonoids and the activities of chitinase and β-1,3-glucanase. In addition, in vitro tests indicated that SNP markedly suppressed mycelial growth and spore germination of C. gloeosporioides through damaging plasma membrane integrity and increasing the leakage of soluble sugar and protein. Our results suggested that SNP could suppress anthracnose decay in postharvest mango fruit, possibly by directly suppressing pathogen growth and indirectly triggering host defense responses.
Collapse
Affiliation(s)
- Yanfang Ren
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
- College of Agriculture, Guizhou University, Guiyang 550025, People's Republic of China
- Jiangsu Petrochemical Safety and Environmental Engineering Research Center, Changzhou, Jiangsu 213164, People's Republic of China
| | - Yuhao Xue
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Dan Tian
- College of Agriculture, Guizhou University, Guiyang 550025, People's Republic of China
| | - Liming Zhang
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Guiyun Xiao
- College of Agriculture, Guizhou University, Guiyang 550025, People's Republic of China
| | - Junyu He
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
- Jiangsu Petrochemical Safety and Environmental Engineering Research Center, Changzhou, Jiangsu 213164, People's Republic of China
| |
Collapse
|