1
|
Pang L, Li R, Chen C, Huang Z, Zhang W, Man C, Yang X, Jiang Y. Combined processing technologies: Promising approaches for reducing Allergenicity of food allergens. Food Chem 2025; 463:141559. [PMID: 39393111 DOI: 10.1016/j.foodchem.2024.141559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/13/2024]
Abstract
Food allergy is a severe threat to human health. Although processing technologies are widely used to reduce allergenicity, hypoallergenic foods produced by a single processing technology cannot satisfy consumer demands. Combined processing technology (CPT) is a promising strategy for efficiently producing high-quality hypoallergenic foods. This paper reviews the effects of CPT on the allergenicity of food allergens from three aspects: physical-biochemical CPT, biochemical-biochemical CPT, and physical-physical CPT. The synergistic mechanisms, strengths, and limitations of these technologies were discussed. It was found that CPT is generally more effective than single-processing technologies. Physical-biochemical CPT is the most widely studied and well-established because physical and biochemical processing technologies complement each other and effectively disrupt conformational and linear epitopes. Biochemical-biochemical CPT primarily disrupts linear epitopes, but most methods are time-consuming. Physical-physical CPT is the least studied; they mainly disrupt conformational epitopes and only rarely affect linear epitopes.
Collapse
Affiliation(s)
- Lidong Pang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Runze Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chen Chen
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhen Huang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Wei Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China.
| |
Collapse
|
2
|
Diana Kerezsi A, Jacquet N, Lelia Pop O, Othmeni I, Figula A, Francis F, Karamoko G, Karoui R, Blecker C. Impact of pilot-scale microfluidization on soybean protein structure in powder and solution. Food Res Int 2024; 188:114466. [PMID: 38823863 DOI: 10.1016/j.foodres.2024.114466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/27/2024] [Accepted: 05/01/2024] [Indexed: 06/03/2024]
Abstract
The effect of microfluidization treatment on the primary, secondary, and tertiary structure of soybean protein isolate (SPI) was investigated. The samples were treated with and without controlling the temperature and circulated in the system 1, 3, and 5 times at high pressure (137 MPa). Then, the treated samples were freeze-dried and reconstituted in water to check the impact of the microfluidization on two different states: powder and solution. Regarding the primary structure, the SDS-PAGE analysis under reducing conditions showed that the protein bands remained unchanged when exposed to microfluidization treatment. When the temperature was controlled for the samples in their powder state, a significant decrease in the quantities of β-sheet and random coil and a slight reduction in α-helix content was noticed. The observed decrease in β-sheet and the increase in β-turns in treated samples indicated that microfluidization may lead to protein unfolding, opening the hydrophobic regions. Additionally, a lower amount of α-helix suggests a higher protein flexibility. After reconstitution in water, a significant difference was observed only in α-helix, β-sheet and β-turn. Related to the tertiary structure, microfluidization increases the surface hydrophobicity. Among all the conditions tested, the samples where the temperature is controlled seem the most suitable.
Collapse
Affiliation(s)
- Andreea Diana Kerezsi
- Gembloux Agro-Bio Tech, Department of Food Science and Formulation, University of Liège, 5030 Gembloux, Belgium; Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca 400372, Romania.
| | - Nicolas Jacquet
- Gembloux Agro-Bio Tech, Department of Food Science and Formulation, University of Liège, 5030 Gembloux, Belgium
| | - Oana Lelia Pop
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca 400372, Romania; Molecular Nutrition and Proteomics Laboratory, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca 400372, Romania
| | - Ines Othmeni
- Gembloux Agro-Bio Tech, Department of Food Science and Formulation, University of Liège, 5030 Gembloux, Belgium; Univ. Artois, Univ. Lille, Univ. Littoral Côte d'Opale, Univ. Picardie Jules Verne, Univ. de Liège, INRAE, Junia, UMR-T 1158, BioEcoAgro, F-62300 Lens, France
| | - Antoine Figula
- Gembloux Agro-Bio Tech, Department of Food Science and Formulation, University of Liège, 5030 Gembloux, Belgium
| | - Frédéric Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
| | - Gaoussou Karamoko
- Univ. Artois, Univ. Lille, Univ. Littoral Côte d'Opale, Univ. Picardie Jules Verne, Univ. de Liège, INRAE, Junia, UMR-T 1158, BioEcoAgro, F-62300 Lens, France
| | - Romdhane Karoui
- Univ. Artois, Univ. Lille, Univ. Littoral Côte d'Opale, Univ. Picardie Jules Verne, Univ. de Liège, INRAE, Junia, UMR-T 1158, BioEcoAgro, F-62300 Lens, France
| | - Christophe Blecker
- Gembloux Agro-Bio Tech, Department of Food Science and Formulation, University of Liège, 5030 Gembloux, Belgium
| |
Collapse
|
3
|
Aggregation and deaggregation: The effect of high-pressure homogenization cycles on myofibrillar proteins aqueous solution. Int J Biol Macromol 2021; 189:567-576. [PMID: 34428492 DOI: 10.1016/j.ijbiomac.2021.08.133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/20/2021] [Accepted: 08/17/2021] [Indexed: 11/21/2022]
Abstract
Myofibrillar proteins (MPs) have not been fully used for a long time due to its poor solubility in low ionic strength solutions. The study explored the effect of high pressure homogenization (HPH) cycles under two pressures on the solubility of MPs. The MPs solubility increased with HPH cycles (p < 0.05), the results of turbidity, appearance, droplet size indicated that the increase of solubility was due to MPs depolymerization, excessive HPH cycles (25k psi for 11 cycles) would lead to protein re-aggregation but does not affect solubility (p>0.05). SDS-PAGE suggested that myosin formed soluble polymers with different molecular weights through disulfide bonds during HPH cycles, the polymer consisted of myosin subunits of different molecular weights. Endogenous fluorescence spectra, intermolecular chemical forces, isoelectric point analysis and free amino acids (FAAs) indicated that the dissolution of polymers in low ionic strength media was dominated by polar environment and intermolecular steric hindrance, but not to FAAs.
Collapse
|
4
|
Zhong J, Fu S, Yu H, Zhou L, Liu W, Liu C, Prakash S. Antigenicity of β-lactoglobulin reduced by combining with oleic acid during dynamic high-pressure microfluidization: Multi-spectroscopy and molecule dynamics simulation analysis. J Dairy Sci 2019; 102:145-154. [DOI: 10.3168/jds.2018-14898] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 09/03/2018] [Indexed: 12/14/2022]
|
5
|
Chen H, Hong Q, Zhong J, Zhou L, Liu W, Luo S, Liu C. The enhancement of gastrointestinal digestibility of β‐LG by dynamic high‐pressure microfluidization to reduce its antigenicity. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.14044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Hao Chen
- State Key laboratory of Food Science and Technology Nanchang University No 235, Nanjing East Road Nanchang Jiangxi 330047 China
| | - Qitong Hong
- State Key laboratory of Food Science and Technology Nanchang University No 235, Nanjing East Road Nanchang Jiangxi 330047 China
| | - Junzhen Zhong
- State Key laboratory of Food Science and Technology Nanchang University No 235, Nanjing East Road Nanchang Jiangxi 330047 China
| | - Lei Zhou
- State Key laboratory of Food Science and Technology Nanchang University No 235, Nanjing East Road Nanchang Jiangxi 330047 China
| | - Wei Liu
- State Key laboratory of Food Science and Technology Nanchang University No 235, Nanjing East Road Nanchang Jiangxi 330047 China
| | - Shunjing Luo
- State Key laboratory of Food Science and Technology Nanchang University No 235, Nanjing East Road Nanchang Jiangxi 330047 China
| | - Chengmei Liu
- State Key laboratory of Food Science and Technology Nanchang University No 235, Nanjing East Road Nanchang Jiangxi 330047 China
| |
Collapse
|
6
|
Zhong J, Yu H, Tu Y, Zhou L, Liu W, Luo S, Liu C, Prakash S. Comparison of antigenicity and conformational changes to β-lactoglobulin following kestose glycation reaction with and without dynamic high-pressure microfluidization treatment. Food Chem 2018; 278:491-496. [PMID: 30583402 DOI: 10.1016/j.foodchem.2018.11.094] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 11/25/2022]
Abstract
Previous work indicated that conformational changes of β-lactoglobulin (β-LG) induced by dynamic high pressure microfluidization (DHPM) was related to the increase of antigenicity. In this study, β-LG glycated with 1-kestose and combined with DHPM decreased the antigenicity of β-LG. The antigenicity of control, β-LG-kestose (0.1 MPa) and β-LG-kestose (80 MPa) were 100, 79 and 42 μg/mL respectively. The molecular weight of β-LG conjugated to kestose increased from 18.4 to 19.6 kDa and its conformation scarcely changed. Conversely, combined with DHPM treatment (80 MPa), β-LG conjugated to kestose formed two conjugates with molecular weight of 18.8 and 19.8 kDa, respectively. Furthermore, the unfolding of β-LG as a result of the treatments is reflected by a decrease of intrinsic and synchronous fluorescence intensity and changes to the secondary structure. The conformational changes induced by DHPM and glycation treatments synergistically decrease the antigenicity of β-LG due to more masked or disrupted epitopes.
Collapse
Affiliation(s)
- Junzhen Zhong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Hongda Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yue Tu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Lei Zhou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Wei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Shunjing Luo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Sangeeta Prakash
- School of Agriculture and Food Sciences, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| |
Collapse
|
7
|
Shahriari-Farfani T, Shahpiri A, Taheri-Kafrani A. Enhancement of Tryptic Digestibility of Milk β-Lactoglobulin Through Treatment with Recombinant Rice Glutathione/Thioredoxin and NADPH Thioredoxin Reductase/Thioredoxin Systems. Appl Biochem Biotechnol 2018; 187:649-661. [PMID: 30030721 DOI: 10.1007/s12010-018-2793-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 05/22/2018] [Indexed: 10/28/2022]
Abstract
β-Lactoglobulin (BLG), a member of lipocalin family, is one of the major bovine milk allergens. This protein exists as a dimer of two identical subunits and contains two intramolecular disulfide bonds that are responsible for its resistance to trypsin digestion and allergenicity. This study aimed to evaluate the effect of reduction of disulfide bonds of BLG with different rice thioredoxins (Trxs) on its digestibility and allergenicity. Therefore, the active recombinant forms of three rice Trx isoforms (OsTrx1, OsTrx20, and OsTrx23) and one rice NADPH-dependent Trx reductase isoform (OsNTRB) were expressed in Escherichia coli. Based on SDS-PAGE, HPLC analysis, and competitive ELISA, the reduction of disulfide bonds of BLG with OsNTRB/OsTrx23, OsNTRB/OsTrx1, GSH/OsTrx1, or GSH/OsTrx20 increased its trypsin digestibility and reduced its immunoreactivity. The finding of this study opens new insights for application of plant Trxs in the improvement of food protein digestibility. Especially, the use of OsTrx20 and OsTrx1 are more cost-effective than E. coli and animal Trxs due to their reduction by GSH and no need to NADPH and Trx reductase as mediator enzyme.
Collapse
Affiliation(s)
- Tahere Shahriari-Farfani
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Azar Shahpiri
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Asghar Taheri-Kafrani
- Department of Biotechnology, Faculty of advanced Sciences and Technologies, University of Isfahan, Isfahan, 81746-73441, Iran
| |
Collapse
|
8
|
Villa C, Costa J, Oliveira MBP, Mafra I. Bovine Milk Allergens: A Comprehensive Review. Compr Rev Food Sci Food Saf 2017; 17:137-164. [DOI: 10.1111/1541-4337.12318] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/09/2017] [Accepted: 10/11/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Caterina Villa
- REQUIMTE-LAQV, Faculdade de Farmácia; Univ. do Porto; Porto Portugal
| | - Joana Costa
- REQUIMTE-LAQV, Faculdade de Farmácia; Univ. do Porto; Porto Portugal
| | | | - Isabel Mafra
- REQUIMTE-LAQV, Faculdade de Farmácia; Univ. do Porto; Porto Portugal
| |
Collapse
|
9
|
Monitoring of the functional properties and unfolding change of Ovalbumin after DHPM treatment by HDX and FTICR MS. Food Chem 2017; 227:413-421. [DOI: 10.1016/j.foodchem.2017.01.109] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 12/09/2016] [Accepted: 01/23/2017] [Indexed: 11/19/2022]
|