1
|
Mao T, Wescombe P, Mohan MS. Predominance of non-covalent interactions of polyphenols with milk proteins and their health promoting properties. Crit Rev Food Sci Nutr 2024; 64:11871-11893. [PMID: 37584498 DOI: 10.1080/10408398.2023.2245037] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Polyphenols have widely accepted health benefits which are limited by their low uptake, low bioavailability, and rapid degradation in the gut. While milk proteins are excellent carriers for polyphenols, the specific interactions of the polyphenols with the milk proteins, need to be understood to facilitate the utilization of these delivery systems in food and pharmaceutical applications. We have evaluated the relevance of different factors affecting milk protein-polyphenol interactions and the subsequent impact on the bioavailability and health promoting aspects of polyphenols. Hydrophobic forces are the primary binding forces of polyphenols to milk proteins. The significant factors affecting the interactions and binding affinity are the molecular weight and the hydrophobicity of the polyphenols. The interaction of polyphenols with milk proteins improved the antioxidant activity in comparison to milk proteins, while conflicting results exists for comparisons with polyphenols. In-vitro and cell line studies demonstrated enhanced bioavailability of polyphenols in the presence of milk proteins as well as higher anti-cancer and anti-allergy benefits. Overall, this work will pave the way for better understanding of polyphenol interactions with milk proteins and enable the tailoring of complexes through sustainable green processes, enabling higher bioavailability and health promoting effects of the polyphenols in food and pharmaceutical applications.
Collapse
Affiliation(s)
- Ting Mao
- Dairy and Food Science Department, South Dakota State University, Brookings, SD, USA
| | - Philip Wescombe
- Yili Innovation Center Oceania, Lincoln University, Christchurch, New Zealand
- National Center of Technology Innovation for Dairy, Hohhot, China
| | - Maneesha S Mohan
- Dairy and Food Science Department, South Dakota State University, Brookings, SD, USA
| |
Collapse
|
2
|
Kuang X, Deng Z, Feng B, He R, Chen L, Liang G. The mechanism of epigallocatechin-3-gallate inhibiting the antigenicity of β-lactoglobulin under pH 6.2, 7.4 and 8.2: Multi-spectroscopy and molecular simulation methods. Int J Biol Macromol 2024; 268:131773. [PMID: 38657930 DOI: 10.1016/j.ijbiomac.2024.131773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/01/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
The antigenicity of β-lactoglobulin (β-LG) can be influenced by pH values and reduced by epigallocatechin-3-gallate (EGCG). However, a detailed mechanism concerning EGCG decreasing the antigenicity of β-LG at different pH levels lacks clarity. Here, we explore the inhibition mechanism of EGCG on the antigenicity of β-LG at pH 6.2, 7.4 and 8.2 using enzyme-linked immunosorbent assay, multi-spectroscopy, mass spectrometry and molecular simulations. The results of Fourier transform infrared spectroscopy (FTIR) and circular dichroism (CD) elucidate that the noncovalent binding of EGCG with β-LG induces variations in the secondary structure and conformations of β-LG. Moreover, EGCG inhibits the antigenicity of β-LG the most at pH 7.4 (98.30 %), followed by pH 6.2 (73.18 %) and pH 8.2 (36.24 %). The inhibitory difference is attributed to the disparity in the number of epitopes involved in the interacting regions of EGCG and β-LG. Our findings suggest that manipulating pH conditions may enhance the effectiveness of antigenic inhibitors, with the potential for further application in the food industry.
Collapse
Affiliation(s)
- Xiaoyu Kuang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400045, China
| | - Zhifen Deng
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400045, China
| | - Bowen Feng
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400045, China
| | - Ran He
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400045, China
| | - Lang Chen
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400045, China
| | - Guizhao Liang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
3
|
Song YQ, Zhao Y, Yao G, Dong RS, Chen J. Heat treatment effect on whey protein-epigallocatechin gallate interaction: A fluorescence spectroscopic analysis. Food Chem X 2023; 20:100917. [PMID: 38144742 PMCID: PMC10739916 DOI: 10.1016/j.fochx.2023.100917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/20/2023] [Accepted: 09/30/2023] [Indexed: 12/26/2023] Open
Abstract
This study aimed to examine the interaction mechanism of polyphenol protein in a heat-treated aqueous solution system using epigallocatechin gallate (EGCG) and whey protein (WP) as raw materials. Further, we hypothesized the binding characteristics of these two compounds. The results were as follows: The quenching mechanism between WP and EGCG was characterized as static quenching. As the temperature increased, the binding constant and the binding force between EGCG and WP both increased. The number of binding sites (denoted as n) between WP and EGCG was approximately 1. Hence, WP provided a single site to bind to EGCG to form a complex. The main binding modes between WP and EGCG were hydrophobic and electrostatic interactions, and they were spontaneously combined into complexes (ΔG < 0). This study provided a basis for the interaction between WP and EGCG under different heating conditions and their combination mode.
Collapse
Affiliation(s)
- Yu-qi Song
- Department of Grass Research, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Haikou 571101, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, One Health Institute, College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Ying Zhao
- Hainan Key Laboratory of Biology of Tropical Flowers and Trees Resources, Forestry Institute, Hainan University, Haikou 570228, China
| | - Guanglong Yao
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, One Health Institute, College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Rong-shu Dong
- Department of Grass Research, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agriculture Sciences, Haikou 571101, China
| | - Jian Chen
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, One Health Institute, College of Food Science and Technology, Hainan University, Haikou 570228, China
| |
Collapse
|
4
|
Shengnan Z, Yingjie Z, Junyue C, Shuangshuang S, Xin L, Yuanyuan S. Exploring the binding effect and mechanism of glycyrrhizin to ovomucin by combining spectroscopic analysis and molecular docking. Int J Biol Macromol 2023; 245:125535. [PMID: 37356685 DOI: 10.1016/j.ijbiomac.2023.125535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 06/27/2023]
Abstract
Ovomucin (OVM) is an ideal natural macromolecular glycoprotein extracted from eggs with good adhesion. Based on the defect that glycyrrhizin (GL) has good antiviral activity but fast metabolism, this study aimed to explore the binding effect and mechanism of GL to OVM, using multi-spectroscopic techniques, isothermal titration calorimetry (ITC), and molecular docking. The adhesion ability of OVM to the hydrophilic interface and GL was first demonstrated by dual polarization interferometry (DPI) analysis and binding capacity assay, and the OVM-GL complex exhibited a similar affinity for the spike protein of COVID-19. The spectroscopic results show that GL can quench the inherent fluorescence and change the glycosidic bond and secondary structure of OVM. The ITC measurements suggested that the binding was exothermic, the hydrogen bond was the dominant binding force for forming OVM-GL. Finally, molecular docking results indicated that GL has hydrogen bond interaction with several amino acid residues located in α-OVM and β-OVM while embedding into the hydrophobic pocket of OVM via hydrophobic interactions. In conclusion, OVM can adhere to the hydrophilic interface and bind to GL through hydrogen bonding and hydrophobic interactions to form a stable complex, that is expected to be helpful in virus prophylaxis.
Collapse
Affiliation(s)
- Zhu Shengnan
- College of Food Science and Engineering, Northwest A&F University, Yangling, PR China
| | - Zhou Yingjie
- College of Food Science and Engineering, Northwest A&F University, Yangling, PR China
| | - Chai Junyue
- College of Food Science and Engineering, Northwest A&F University, Yangling, PR China
| | - Sun Shuangshuang
- College of Food Science and Engineering, Northwest A&F University, Yangling, PR China
| | - Lü Xin
- College of Food Science and Engineering, Northwest A&F University, Yangling, PR China
| | - Shan Yuanyuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, PR China.
| |
Collapse
|
5
|
Abdollahi K, Condict L, Hung A, Kasapis S. Examination of β-lactoglobulin-ferulic acid complexation at elevated temperature using biochemical spectroscopy, proteomics and molecular dynamics. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
6
|
El-Maksoud AAA, Cheng W, Petersen SV, Pandiselvam R, Guo Z. Covalent phenolic acid-grafted β-lactoglobulin conjugates: Synthesis, characterization, and evaluation of their multifunctional properties. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Li J, Liu Y, Li T, Gantumur MA, Qayum A, Bilawal A, Jiang Z, Wang L. Non-covalent interaction and digestive characteristics between α-lactalbumin and safflower yellow: Impacts of microwave heating temperature. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113206] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Insights from alpha-Lactoalbumin and beta-Lactoglobulin into mechanisms of nanoliposome-whey protein interactions. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Ren S, Giusti MM. Comparing the effect of whey protein preheating temperatures on the color expression and stability of anthocyanins from different sources. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
10
|
Effects of Baicalein and Chrysin on the Structure and Functional Properties of β-Lactoglobulin. Foods 2022; 11:foods11020165. [PMID: 35053897 PMCID: PMC8774648 DOI: 10.3390/foods11020165] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/01/2022] [Accepted: 01/06/2022] [Indexed: 12/16/2022] Open
Abstract
Two flavonoids with similar structures, baicalein (Bai) and chrysin (Chr), were selected to investigate the interactions with β-lactoglobulin (BLG) and the influences on the structure and functional properties of BLG by multispectral methods combined with molecular docking and dynamic (MD) simulation techniques. The results of fluorescence quenching suggested that both Bai and Chr interacted with BLG to form complexes with the binding constant of the magnitude of 105 L·mol−1. The binding affinity between BLG and Bai was stronger than that of Chr due to more hydrogen bond formation in Bai–BLG binding. The existence of Bai or Chr induced a looser conformation of BLG, but Chr had a greater effect on the secondary structure of BLG. The surface hydrophobicity and free sulfhydryl group content of BLG lessened due to the presence of the two flavonoids. Molecular docking was performed at the binding site of Bai or Chr located in the surface of BLG, and hydrophobic interaction and hydrogen bond actuated the formation of the Bai/Chr–BLG complex. Molecular dynamics simulation verified that the combination of Chr and BLG decreased the stability of BLG, while Bai had little effect on it. Moreover, the foaming properties of BLG got better in the presence of the two flavonoids compounds and Bai improved its emulsification stability of the protein, but Chr had the opposite effect. This work provides a new idea for the development of novel dietary supplements using functional proteins as flavonoid delivery vectors.
Collapse
|
11
|
Designing delivery systems for functional ingredients by protein/polysaccharide interactions. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Feyzi S, Varidi M, Housaindokht MR, Es'haghi Z. pH and NaCl effects on the interactions between safranal and whey protein isolate. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Ren S, Jiménez-Flores R, Giusti MM. The interactions between anthocyanin and whey protein: A review. Compr Rev Food Sci Food Saf 2021; 20:5992-6011. [PMID: 34622535 DOI: 10.1111/1541-4337.12854] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 12/27/2022]
Abstract
Anthocyanins (ACN) are natural pigments that produce bright red, blue, and purple colors in plants and can be used to color food products. However, ACN sensitivity to different factors limits their applications in the food industry. Whey protein (WP), a functional nutritional additive, has been shown to interact with ACN and improve the color, stability, antioxidant capacity, bioavailability, and other functional properties of the ACN-WP complex. The WP's secondary structure is expected to unfold due to heat treatment, which may increase its binding affinity with ACN. Different ACN structures will also have different binding affinity with WP and their interaction mechanism may also be different. Circular dichroism (CD) spectroscopy and Fourier transform infrared (FTIR) spectroscopy show that the WP secondary structure changes after binding with ACN. Fluorescence spectroscopy shows that the WP maximum fluorescence emission wavelength shifts, and the fluorescence intensity decreases after interaction with ACN. Moreover, thermodynamic analysis suggests that the ACN-WP binding forces are mainly hydrophobic interactions, although there is also evidence of electrostatic interactions and hydrogen bonding between ACN and WP. In this review, we summarize the information available on ACN-WP interactions under different conditions and discuss the impact of different ACN chemical structures and of WP conformation changes on the affinity between ACN and WP. This summary helps improve our understanding of WP protection of ACN against color degradation, thus providing new tools to improve ACN color stability and expanding the applications of ACN and WP in the food and pharmacy industries.
Collapse
Affiliation(s)
- Shuai Ren
- The Ohio State University, Department of Food Science and Technology, Columbus, Ohio, USA
| | - Rafael Jiménez-Flores
- The Ohio State University, Department of Food Science and Technology, Columbus, Ohio, USA
| | - Maria Monica Giusti
- The Ohio State University, Department of Food Science and Technology, Columbus, Ohio, USA
| |
Collapse
|
14
|
Liu T, Liu M, Liu H, Ren Y, Zhao Y, Yan H, Wang Q, Zhang N, Ding Z, Wang Z. Co-encapsulation of (-)-epigallocatechin-3-gallate and piceatannol/oxyresveratrol in β-lactoglobulin: effect of ligand-protein binding on the antioxidant activity, stability, solubility and cytotoxicity. Food Funct 2021; 12:7126-7144. [PMID: 34180492 DOI: 10.1039/d1fo00481f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The co-encapsulation of multiple bioactive components in a carrier may produce synergistic effects and improve health benefits. In this study, the interactions of β-lactoglobulin (β-LG) with epigallocatechin-3-gallate (EGCG) and/or piceatannol (PIC)/oxyresveratrol (OXY) were investigated by multispectroscopic techniques, isothermal titration calorimetry, and molecular docking. The static quenching mechanism of β-LG by EGCG, PIC and OXY was confirmed by fluorescence spectroscopy and UV-vis absorption difference spectroscopy. The binding sites of these three polyphenols in β-LG were identified by site marking fluorescence experiments and molecular docking. The thermodynamic parameters of the β-LG + EGCG/PIC/OXY binary complex and β-LG + EGCG + PIC/OXY ternary complex were obtained from fluorescence data and used to analyze the main driving force for complex formation. The exothermic binding process was further confirmed by isothermal titration calorimetry. The α-helical content, particle size and morphology of free and ligand-bound β-LG were determined by circular dichroism spectroscopy, dynamic light scattering and transmission electron microscopy, respectively. The effect of EGCG, PIC and OXY on the conformation of β-LG was studied by Fourier transform infrared spectroscopy. In addition, the maximum synergistic antioxidant activity between EGCG and PIC/OXY was obtained by response surface analysis. The effects of β-LG in the binary and ternary systems on the antioxidant activity, stability, solubility and cytotoxicity of the polyphenols were also studied. Finally, the different cytotoxicities of the complexes and nanoparticles of the binary and ternary systems were compared. The results of this study are expected to provide a theoretical basis for the development of β-LG-based carriers co-encapsulating a variety of bioactive components.
Collapse
Affiliation(s)
- Tingting Liu
- Institute of BioPharmceutical Research, Liaocheng University, Liaocheng 252059, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Ren S, Giusti MM. The effect of whey protein concentration and preheating temperature on the color and stability of purple corn, grape and black carrot anthocyanins in the presence of ascorbic acid. Food Res Int 2021; 144:110350. [PMID: 34053543 DOI: 10.1016/j.foodres.2021.110350] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 02/25/2021] [Accepted: 03/20/2021] [Indexed: 12/15/2022]
Abstract
Our objective was to explore the effects of whey protein (WP) concentration and preheating temperature on anthocyanin color expression and stability over time in the presence of ascorbic acid. Anthocyanins from purple corn, grape or black carrot were mixed with native WP or preheated WP (40-80°C) in various concentrations (0-10 mg/mL) in pH 3 buffer containing 0.05% ascorbic acid and stored in the dark at 25 °C for 5 days. WP addition increased anthocyanin absorbance and protected anthocyanin from ascorbic acid-mediated degradation. Increasing WP concentration resulted in lower lightness and higher chroma, hue angle and color stability. The color loss of anthocyanin solutions decreased by 40%-50% when 10 mg/mL WP was added. Native WP showed more color enhancement and protection than thermally-induced WP. Increasing the WP preheating temperature resulted in less absorbance increase and more absorbance loss. Anthocyanin' half-life was improved by addition of WP in a dose dependent manner. Native WP addition (10 mg/mL) extended anthocyanin half-life by about 2 times for purple corn and grape, and 1.31 times for black carrot anthocyanin solutions. Preheating temperature did not significantly affect anthocyanin protection by WP. WP addition might enhance anthocyanin stability in beverages containing ascorbic acid, expanding anthocyanin application in foods.
Collapse
Affiliation(s)
- Shuai Ren
- The Ohio State University, Department of Food Science and Technology, 2015 Fyffe Road, Columbus, OH 43210-1007, United States.
| | - M Monica Giusti
- The Ohio State University, Department of Food Science and Technology, 2015 Fyffe Road, Columbus, OH 43210-1007, United States.
| |
Collapse
|
17
|
The interaction mechanism of β-casein with oligomeric proanthocyanidins and its effect on proanthocyanidin bioaccessibility. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106485] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Ren S, Giusti MM. Monitoring the Interaction between Thermally Induced Whey Protein and Anthocyanin by Fluorescence Quenching Spectroscopy. Foods 2021; 10:310. [PMID: 33546221 PMCID: PMC7913281 DOI: 10.3390/foods10020310] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/22/2021] [Accepted: 01/29/2021] [Indexed: 12/27/2022] Open
Abstract
The color stability of anthocyanins was shown to improve with addition of whey proteins (WP). The goal of this study was to investigate the binding mechanisms of purple corn, grape and black carrot anthocyanin extracts to native and preheated WP (40-80 °C, 3.6 μM) at a pH of 3 using fluorescence quenching spectroscopy. The fluorescence spectra were collected with an excitation wavelength of 280 nm at 25 °C, 35 °C and 45 °C. The quenching data were analyzed by using the Stern-Volmer equation. The fluorescence intensity of WP decreased (up to 73%) and its λmax increased (by ~5 nm) with increasing anthocyanin concentration (0-100 μM). The quenching data showed that the interaction between anthocyanin extracts and WP was a static quenching process. Thermodynamic analysis showed their binding was mainly through hydrophobic interactions. Their binding affinity was higher for preheated WP than native WP and decreased gradually with increasing preheating temperature. Black carrot anthocyanin extract had the lowest binding affinity with WP, likely due to the larger molecular structure. These results help better understand the protection mechanism of native and preheated WP on anthocyanin color stability, expanding the application of anthocyanins as food colorants that better withstand processing and storage.
Collapse
Affiliation(s)
| | - M. Monica Giusti
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Rd, Columbus, OH 43210-1007, USA;
| |
Collapse
|
19
|
Qie X, Wu Y, Chen Y, Liu C, Zeng M, Qin F, Wang Z, Chen J, He Z. Competitive interactions among tea catechins, proteins, and digestive enzymes modulate in vitro protein digestibility, catechin bioaccessibility, and antioxidant activity of milk tea beverage model systems. Food Res Int 2021; 140:110050. [DOI: 10.1016/j.foodres.2020.110050] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/19/2020] [Accepted: 12/16/2020] [Indexed: 11/16/2022]
|
20
|
Characterization the non-covalent interactions between beta lactoglobulin and selected phenolic acids. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105761] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
21
|
Design of β-lactoglobulin micro- and nanostructures by controlling gelation through physical variables. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105357] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
22
|
Qie X, Chen Y, Quan W, Wang Z, Zeng M, Qin F, Chen J, He Z. Analysis of β-lactoglobulin–epigallocatechin gallate interactions: the antioxidant capacity and effects of polyphenols under different heating conditions in polyphenolic–protein interactions. Food Funct 2020; 11:3867-3878. [DOI: 10.1039/d0fo00627k] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A β-Lg-EGCG covalent conjugate is formed by linking the amino group of a lysine residue and EGCG; the antioxidant capacity of EGCG induced by β-Lg–EGCG covalent conjugates causes a significant decrease.
Collapse
Affiliation(s)
- Xuejiao Qie
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
- International Joint Laboratory on Food Safety
| | - Yao Chen
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
- International Joint Laboratory on Food Safety
| | - Wei Quan
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
- International Joint Laboratory on Food Safety
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
- International Joint Laboratory on Food Safety
| |
Collapse
|
23
|
Dumitraşcu L, Ursache FM, Aprodu I, Stănciuc N. The effect of calcium and magnesium on the interaction between β‐lactoglobulin and carotenoids from sea buckthorn berries. LUMINESCENCE 2019; 34:739-748. [DOI: 10.1002/bio.3668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/12/2019] [Accepted: 05/28/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Loredana Dumitraşcu
- Faculty of Food Science and EngineeringDunărea de Jos University of Galati Domnească Street 111 Galati Romania
| | - Florentina Mihaela Ursache
- Faculty of Food Science and EngineeringDunărea de Jos University of Galati Domnească Street 111 Galati Romania
| | - Iuliana Aprodu
- Faculty of Food Science and EngineeringDunărea de Jos University of Galati Domnească Street 111 Galati Romania
| | - Nicoleta Stănciuc
- Faculty of Food Science and EngineeringDunărea de Jos University of Galati Domnească Street 111 Galati Romania
| |
Collapse
|
24
|
Wang Q, Li W, Liu P, Hu Z, Qin X, Liu G. A glycated whey protein isolate–epigallocatechin gallate nanocomplex enhances the stability of emulsion delivery of β-carotene during simulated digestion. Food Funct 2019; 10:6829-6839. [DOI: 10.1039/c9fo01605h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A glycated whey protein isolate–epigallocatechin gallate (EGCG) nanocomplex-stabilized emulsion was used to encapsulate β-carotene.
Collapse
Affiliation(s)
- Qi Wang
- College of Food Science and Engineering
- Wuhan Polytechnic University
- Wuhan
- China
| | - Wanrong Li
- College of Food Science and Engineering
- Wuhan Polytechnic University
- Wuhan
- China
| | - Pei Liu
- College of Food Science and Engineering
- Wuhan Polytechnic University
- Wuhan
- China
| | - Zhongze Hu
- College of Food Science and Engineering
- Wuhan Polytechnic University
- Wuhan
- China
| | - Xinguang Qin
- College of Food Science and Engineering
- Wuhan Polytechnic University
- Wuhan
- China
| | - Gang Liu
- College of Food Science and Engineering
- Wuhan Polytechnic University
- Wuhan
- China
| |
Collapse
|
25
|
Li T, Hu P, Dai T, Li P, Ye X, Chen J, Liu C. Comparing the binding interaction between β-lactoglobulin and flavonoids with different structure by multi-spectroscopy analysis and molecular docking. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 201:197-206. [PMID: 29753236 DOI: 10.1016/j.saa.2018.05.011] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/11/2018] [Accepted: 05/03/2018] [Indexed: 05/26/2023]
Abstract
Four kinds of flavonoids (apigenin, naringenin, kaempferol, genistein) were skillfully selected to investigate the interaction between flavonoids and β-lactoglobulin (β-LG) by multi-spectroscopy analysis and molecular docking. Hydrogenation on C2C3 double bond weakened the affinity of apigenin for β-LG and it's most obvious, followed by hydroxylation of C3 and position isomerism of phenyl ring B. The main interaction force for apigenin and naringenin binding to β-LG (van der Waals forces and hydrogen bonds) was different from that of genistein and kaempferol (hydrophobic interactions). Circular dichroism and fluorescence experiments indicated that conformation of β-LG became loose and surface hydrophobicity of β-LG was reduced in the presence of flavonoids. Molecular docking indicated that flavonoids interacted with specific amino acid residues located on the outer surface of β-LG. These findings can provide a deep understanding about the interaction mechanism between flavonoids and protein, and it may be valuable in dairy incorporation with flavonoids.
Collapse
Affiliation(s)
- Ti Li
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235, Nanjing East Road, Nanchang 330047, China
| | - Peng Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235, Nanjing East Road, Nanchang 330047, China
| | - Taotao Dai
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235, Nanjing East Road, Nanchang 330047, China
| | - Panying Li
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235, Nanjing East Road, Nanchang 330047, China
| | - Xiaoqin Ye
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235, Nanjing East Road, Nanchang 330047, China
| | - Jun Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235, Nanjing East Road, Nanchang 330047, China.
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235, Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
26
|
He W, Mu H, Liu Z, Lu M, Hang F, Chen J, Zeng M, Qin F, He Z. Effect of preheat treatment of milk proteins on their interactions with cyanidin-3-O-glucoside. Food Res Int 2018; 107:394-405. [PMID: 29580500 DOI: 10.1016/j.foodres.2018.02.064] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 02/20/2018] [Accepted: 02/25/2018] [Indexed: 01/10/2023]
Abstract
In this study, the binding of cyanidin-3-O-glucoside (C3G) to preheated milk proteins β-lactoglobulin (β-Lg) and β-casein (β-CN) at 55-90 °C under pH 3.6 and pH 6.3 was investigated using multi-spectral techniques. Fluorescence quenching spectroscopy data showed C3G quenched milk proteins' fluorescence strongly. Thermodynamic analysis revealed that C3G bound to β-Lg mainly through hydrogen bonding and hydrophobic interactions, and that their binding affinity increased gradually with increasing preheating temperature at pH 6.3, whereas it decreased at pH 3.6. Hydrogen bonding and van der Waals forces played the major roles in the interaction of β-CN with C3G, their affinity decreasing with increasing preheating temperature at both pH values. The combination of C3G and preheated β-Lg at 85 °C had the strongest binding affinity, with a KA of 14.10 (±0.33) × 105 M-1 (pH 6.3, 298 K). Preheating of milk proteins did not change their major forces with C3G. Fourier transform infrared spectra (FT-IR) results showed that C3G binding altered the secondary structures of β-Lg and β-CN by reducing the proportion of α-helix and β-sheet structures and increasing the proportion of random coil and turn structures. The structural changes of preheated β-Lg upon C3G binding were more pronounced than that of native β-Lg, while there was little difference between preheated and native β-CN in their structural changes upon C3G binding. These results will be helpful in better understanding the relevance of native and preheated milk protein-C3G interactions to the stability of C3G, and in promoting its application in the food industry as a natural pigment.
Collapse
Affiliation(s)
- Wenjia He
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Haibo Mu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China
| | - Zhenmin Liu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China
| | - Mei Lu
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588-6205, United States
| | - Feng Hang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai 200436, China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
27
|
Czubinski J, Dwiecki K. A review of methods used for investigation of protein-phenolic compound interactions. Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13339] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jaroslaw Czubinski
- Department of Biochemistry and Food Analysis; Poznan University of Life Sciences; 28 Wojska Polskiego Poznan 60-637 Poland
| | - Krzysztof Dwiecki
- Department of Biochemistry and Food Analysis; Poznan University of Life Sciences; 28 Wojska Polskiego Poznan 60-637 Poland
| |
Collapse
|
28
|
Liu C, He W, Chen S, Chen J, Zeng M, Qin F, He Z. Interactions of digestive enzymes and milk proteins with tea catechins at gastric and intestinal pH. Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13276] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Chan Liu
- State Key Laboratory of Food Science and Technology; Jiangnan University; Wuxi Jiangsu 214122 China
| | - Wenjia He
- State Key Laboratory of Food Science and Technology; Jiangnan University; Wuxi Jiangsu 214122 China
| | - Saisai Chen
- State Key Laboratory of Food Science and Technology; Jiangnan University; Wuxi Jiangsu 214122 China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology; Jiangnan University; Wuxi Jiangsu 214122 China
- Synergetic Innovation Center of Food Safety and Nutrition; Jiangnan University; Wuxi Jiangsu 214122 China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology; Jiangnan University; Wuxi Jiangsu 214122 China
| | - Fang Qin
- State Key Laboratory of Food Science and Technology; Jiangnan University; Wuxi Jiangsu 214122 China
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology; Jiangnan University; Wuxi Jiangsu 214122 China
| |
Collapse
|
29
|
Complexation of bovine β-lactoglobulin with malvidin-3-O-glucoside and its effect on the stability of grape skin anthocyanin extracts. Food Chem 2016; 209:234-40. [DOI: 10.1016/j.foodchem.2016.04.048] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/15/2016] [Accepted: 04/15/2016] [Indexed: 01/21/2023]
|
30
|
Preheated milk proteins improve the stability of grape skin anthocyanins extracts. Food Chem 2016; 210:221-7. [PMID: 27211641 DOI: 10.1016/j.foodchem.2016.04.116] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 04/23/2016] [Accepted: 04/25/2016] [Indexed: 12/19/2022]
Abstract
The effects of casein and whey proteins, preheated at 40-100°C and 45-60°C for 15min, respectively, on color loss and anthocyanins degradation in grape skin anthocyanins extracts (GSAE) at pH 3.2 and 6.3 were evaluated. Preheating milk proteins effectively improved their protective effects against color loss and anthocyanins degradation in GSAE solutions during thermal treatment (at 80°C for 2h), H2O2 oxidation (0.005% H2O2 for 1h) and illumination (at 5000lx for 5 d). Whey proteins and casein, preheated at 50°C and 60°C for 15min, respectively, demonstrated the optimal protective effects. However, preheated whey proteins had a better protective effect on the thermal, oxidation and photo stability of GSAE, decreasing the thermal, oxidative and photo degradation of anthocyanins in GSAE 71.59%, 32.22% and 56.92% at pH 3.2 and 54.91%, 22.89% and 46.68% at pH 6.3, respectively.
Collapse
|