1
|
Wen J, Wang Y, He Y, Shu N, Cao W, Sun Y, Yuan P, Sun B, Yan Y, Qin H, Fan S, Lu W. Flavor Quality Analysis of Ten Actinidia arguta Fruits Based on High-Performance Liquid Chromatography and Headspace Gas Chromatography-Ion Mobility Spectrometry. Molecules 2023; 28:7559. [PMID: 38005281 PMCID: PMC10674867 DOI: 10.3390/molecules28227559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/26/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Actinidia arguta is a fruit crop with high nutritional and economic value. However, its flavor quality depends on various factors, such as variety, environment, and post-harvest handling. We analyzed the composition of total soluble sugars, titratable acids, organic acids, and flavor substances in the fruits of ten A. arguta varieties. The total soluble sugar content ranged from 4.22 g/L to 12.99 g/L, the titratable acid content ranged from 52.55 g/L to 89.9 g/L, and the sugar-acid ratio ranged from 5.39 to 14.17 at the soft ripe stage. High-performance liquid chromatography (HPLC) showed that citric, quinic, and malic acids were the main organic acids in the A. arguta fruits. Headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS) detected 81 volatile compounds in 10 A. arguta varieties, including 24 esters, 17 alcohols, 23 aldehydes, 7 ketones, 5 terpenes, 2 acids, 1 Pyrazine, 1 furan, and 1 benzene. Esters and aldehydes had the highest relative content of total volatile compounds. An orthogonal partial least squares discriminant analysis (OPLS-DA) based on the odor activity value (OAV) revealed that myrcene, benzaldehyde, methyl isobutyrate, α-phellandrene, 3-methyl butanal, valeraldehyde, ethyl butyrate, acetoin, (E)-2-octenal, hexyl propanoate, terpinolene, 1-penten-3-one, and methyl butyrate were the main contributors to the differences in the aroma profiles of the fruits of different A. arguta varieties. Ten A. arguta varieties have different flavors. This study can clarify the differences between varieties and provide a reference for the evaluation of A. arguta fruit flavor, variety improvement and new variety selection.
Collapse
Affiliation(s)
- Jinli Wen
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Yue Wang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Yanli He
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Nan Shu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130018, China
| | - Weiyu Cao
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Yining Sun
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Pengqiang Yuan
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Bowei Sun
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Yiping Yan
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Hongyan Qin
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Shutian Fan
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Wenpeng Lu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| |
Collapse
|
2
|
Characterization of Volatile Organic Compounds in Kiwiberries (Actinidia arguta) Exposed to High Hydrostatic Pressure Processing by HS-SPME/GC-MS. Molecules 2022; 27:molecules27185914. [PMID: 36144650 PMCID: PMC9502335 DOI: 10.3390/molecules27185914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
HS-SPME/GC-MS analysis was carried out to characterize the profile of volatile organic compounds (VOCs) in kiwiberry cultivars (Geneva and Weiki) exposed to high hydrostatic pressure (HHP) (450–550–650/5 and 15 min). The sum of individual VOCs in Geneva (6.493 mg/kg) and Weiki (11.939 mg/kg) samples was found to be significantly reduced after processing, particularly for pressurization conditions of 650 MPa/15 min (decrease of 62%) and 550 MPa/15 min (decrease of 84%), respectively. On the other hand, Geneva and Weiki exposed to 450 MPa/5 min manifested the lowest loss in the sum of the VOCs. Geneva exposure to 450 MPa/5 min led to an increase in the hexanal (r = 0.782) and linalool (r = 0.806) content. Sample pressurization (450 MPa/15 min) promoted the formation of methyl butanoate, ethyl hexanoate, and cis-geraniol, simultaneously increasing the benzaldehyde (r = 0.886) concentration. However, the treatment of Weiki at 450 MPa/5 min favored trans-2-heptenal (r = 0.999) and linalool (r = 0.970) formation, as well as the (-)-terpinen-4-ol (r = 0.848) and geraniol (r = 0.694) content. Ethyl butanoate, hexanal, and 1-octen-3-ol were highly concentrated in the HHP-treated (450 MPa/5 or 15 min) Weiki. Pressurization decreased the terpenoid contribution, but also increased the contribution of alcohols and aldehydes to the overall VOC number in both tested cultivars.
Collapse
|
3
|
Schlumpberger P, Stübner CA, Steinhaus M. Development and evaluation of an automated solvent-assisted flavour evaporation (aSAFE). Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04072-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractArtefact-avoiding isolation of the volatiles from foods is a crucial step before analysis of odour-active compounds by gas chromatography (GC). In the past 20 years, solvent extraction followed by solvent-assisted flavour evaporation (SAFE) has become the standard approach, particularly prior to GC–olfactometry. The manual valve of the SAFE equipment, however, leads to suboptimal yields and the risk of a contamination of the volatile isolate with non-volatiles. We thus developed an automated SAFE (aSAFE) approach by replacing the manual valve with an electronically controlled pneumatic valve. The aSAFE provides clearly higher yields than the manual SAFE (mSAFE), notably from extracts high in lipids and for odorants with comparably high boiling points. Additionally, aSAFE substantially reduces the risk of non-volatiles being transferred to the volatile isolate. Full automatisation is possible by combining the aSAFE approach with an automated liquid nitrogen refill system as well as an endpoint recognition and shut-off system.
Collapse
|
4
|
Han X, Wang X, Shen C, Mo Y, Tian R, Mao L, Luo Z, Yang H. Exogenous ABA promotes aroma biosynthesis of postharvest kiwifruit after low-temperature storage. PLANTA 2022; 255:82. [PMID: 35257207 DOI: 10.1007/s00425-022-03855-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Exogenous ABA played a positive role in the accumulation and biosynthesis of aroma components of postharvest kiwifruit after low-temperature storage, especially the esters production during ripening. Low-temperature storage (LTS) generally affects the aroma formation associated with the decrease in aroma quality in kiwifruit. In this work, abscisic acid (ABA) treatment after LTS increased the production of aroma components in postharvest kiwifruit and enhanced the related enzyme activity, especially alcohol acyltransferase (AAT), branched amino acid transaminase (BCAT) and hydroperoxide lyase (HPL). Corresponding to the enzyme activity, the gene expression of AchnAAT, AchnADH, AchnBCAT and AchnHPL was significantly up-regulated by ABA. The principal component analysis further illustrated the differences in aroma components between ABA and the control. The positive correlation of aroma accumulation with the expression levels of AchnPDC and AchnLOX and the enzyme activities of BCAT and pyruvate decarboxylase (PDC) was also revealed by correlation analysis. In addition, the promoter sequences of the key genes involved in aroma biosynthesis contained multiple cis-elements (ABRE and G-box) of ABA-responsive proteins. Combining the transcriptome sequencing data, the promoting role of ABA signaling in the regulation of aroma biosynthesis of postharvest kiwifruit after LTS was discussed. This study would provide a reference for improving aroma quality of postharvest kiwifruit after LTS, as well the molecular mechanism of kiwifruit aroma fading after LTS.
Collapse
Affiliation(s)
- Xueyuan Han
- School of Life Science, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Xiaoyu Wang
- School of Life Science, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Chi Shen
- School of Life Science, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Yiwei Mo
- School of Life Science, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Rungang Tian
- School of Life Science, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China
| | - Linchun Mao
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, 310058, China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, 310058, China
| | - Huanyi Yang
- School of Life Science, Shaoxing University, Shaoxing, 312000, Zhejiang Province, China.
| |
Collapse
|
5
|
Bizzio LN, Tieman D, Munoz PR. Branched-Chain Volatiles in Fruit: A Molecular Perspective. FRONTIERS IN PLANT SCIENCE 2022; 12:814138. [PMID: 35154212 PMCID: PMC8829073 DOI: 10.3389/fpls.2021.814138] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/23/2021] [Indexed: 05/03/2023]
Abstract
Branched-chain volatiles (BCVs) constitute an important family of fruit volatile metabolites essential to the characteristic flavor and aroma profiles of many edible fruits. Yet in contrast to other groups of volatile organic compounds important to fruit flavor such as terpenoids, phenylpropanoids, and oxylipins, the molecular biology underlying BCV biosynthesis remains poorly understood. This lack of knowledge is a barrier to efforts aimed at obtaining a more comprehensive understanding of fruit flavor and aroma and the biology underlying these complex phenomena. In this review, we discuss the current state of knowledge regarding fruit BCV biosynthesis from the perspective of molecular biology. We survey the diversity of BCV compounds identified in edible fruits as well as explore various hypotheses concerning their biosynthesis. Insights from branched-chain precursor compound metabolism obtained from non-plant organisms and how they may apply to fruit BCV production are also considered, along with potential avenues for future research that might clarify unresolved questions regarding BCV metabolism in fruits.
Collapse
Affiliation(s)
- Lorenzo N. Bizzio
- Blueberry Breeding and Genomics Lab, Department of Horticultural Sciences, University of Florida, Gainesville, FL, United States
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
| | - Denise Tieman
- Department of Horticultural Sciences, University of Florida, Gainesville, FL, United States
| | - Patricio R. Munoz
- Blueberry Breeding and Genomics Lab, Department of Horticultural Sciences, University of Florida, Gainesville, FL, United States
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
| |
Collapse
|
6
|
Haag F, Hoffmann S, Krautwurst D. Key Food Furanones Furaneol and Sotolone Specifically Activate Distinct Odorant Receptors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10999-11005. [PMID: 34496214 DOI: 10.1021/acs.jafc.1c03314] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Furanones formed during the Maillard reaction often are natural aroma-determining compounds found in numerous foods. Prominent economically relevant representatives are the structural homologues Furaneol and sotolone, which are important natural flavoring compounds because of their distinct caramel- and seasoning-like odor qualities. These, however, cannot be predicted by the odorants' molecular shape, rather their receptors' activation parameters help to decipher the encoding of odor quality. Here, the distinct odor qualities of Furaneol and sotolone suggested an activation of at least two out of our ca. 400 different odorant receptor types, which are the molecular biosensors of our chemical sense of olfaction. While an odorant receptor has been identified for sotolone, a receptor specific for Furaneol has been elusive. Using a bidirectional screening approach employing 616 receptor variants and 187 key food odorants in a HEK-293 cell-based luminescence assay, we newly identified OR5M3 as a receptor specifically activated by Furaneol and homofuraneol.
Collapse
Affiliation(s)
- Franziska Haag
- Leibniz-Institute for Food Systems Biology, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Sandra Hoffmann
- Leibniz-Institute for Food Systems Biology, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| | - Dietmar Krautwurst
- Leibniz-Institute for Food Systems Biology, Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany
| |
Collapse
|
7
|
Egea MB, Bertolo MRV, de Oliveira Filho JG, Lemes AC. A Narrative Review of the Current Knowledge on Fruit Active Aroma Using Gas Chromatography-Olfactometry (GC-O) Analysis. Molecules 2021; 26:5181. [PMID: 34500614 PMCID: PMC8433627 DOI: 10.3390/molecules26175181] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/25/2022] Open
Abstract
Fruit aroma, a mixture of chemical compounds with odor, is a strong attractant derived from a complex mixture of different amounts and intensities (threshold) of chemical compounds found in fruits. The odor-producing compounds of fruit aroma are derived from carbohydrates, lipids, phenolic compounds, and mono- and sesquiterpenes, among others. The identification of compounds responsible for fruit aroma is usually conducted using gas chromatography coupled with olfactometry (GC-O). This technique separates the chemical compounds from the aroma of foods using a chromatographic column and divides the resultant outflow between the physical detector and a testing outlet (sniffing port). Trained judges describe the perceived odor in terms of the intensity of the odor zones perceived according to their training method. Moreover, the use of GC-O coupled with a mass detector (GC-MS-O) allows for the retrieval of chemical information such as identification and quantification of compounds, which can be correlated to sensory information. This review aimed to demonstrate the application of GC-MS-O in the identification of precursor compounds in fruit aroma, considering important factors for the application, main results, and most recent advances in this field.
Collapse
Affiliation(s)
- Mariana Buranelo Egea
- Campus Rio Verde, Goiano Federal Institute of Education, Science and Technology, Rodovia Sul Goiana, Km 01, Rural Area, Rio Verde 75901-970, GO, Brazil
| | - Mirella Romanelli Vicente Bertolo
- São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), Av. Trabalhador São-Carlense, 400, CP-780, São Carlos 13560-970, SP, Brazil;
| | | | - Ailton Cesar Lemes
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro (UFRJ), Av. Athos da Silveira Ramos, 149, Rio de Janeiro 21941-909, RJ, Brazil;
| |
Collapse
|
8
|
1-Methylcyclopropene maintains the postharvest quality of hardy kiwifruit (Actinidia aruguta). JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00893-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Zhang H, Mo X, Tang D, Ma Y, Xie Y, Yang H, Shi M, Li L, Li W, Yan F, Zhang Y, Zhang H, Xu J. Comparative analysis of volatile and carotenoid metabolites and mineral elements in the flesh of 17 kiwifruit. J Food Sci 2021; 86:3023-3032. [PMID: 34146407 DOI: 10.1111/1750-3841.15796] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/26/2021] [Accepted: 05/07/2021] [Indexed: 11/29/2022]
Abstract
Kiwifruit contains abundant nutritive compounds and is highly favored by the consumers worldwide. Therefore, detailed metabolic profiling is important to provide theoretic basis for the improvement of kiwifruit quality. In this study, the levels of volatiles, carotenoids, and mineral elements in the flesh of 17 kiwifruit accessions were evaluated. Acids and esters were the main volatiles in kiwifruit. During these 17 kiwifruit accessions, "Chenhong," three "Jinyan," and two "Guichang" germplasms were specifically rich in aromatic esters, which might be associated with their special taste. The main carotenoids were lutein, β-carotene, and zeaxanthin, and their levels were also genotype specific, with the green-fleshed "Guichang" having the highest level of carotenoids, and red-fleshed "Fuhong" and "Chenhong" being rich in zeaxanthin. Partial correlation analysis showed that the contents of some mineral elements were significantly correlated with those of specific volatiles and carotenoids, indicating the impacts of mineral elements on the accumulation of volatiles and carotenoids in the kiwifruit flesh. These results indicated that the contents of carotenoids and volatiles seemed to be affected by mineral elements and also provided a new potential method for improving fruit flavor quality in production.
Collapse
Affiliation(s)
- Haipeng Zhang
- College of Horticulture, Henan Agricultural University, Zhengzhou, PR China
| | - Xiaoqin Mo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, PR China
| | - Dongmei Tang
- Citrus Fruit Research Institute, Guiyang, Guizhou Province, PR China
| | - Yuhua Ma
- Citrus Fruit Research Institute, Guiyang, Guizhou Province, PR China
| | - Yunxia Xie
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, PR China
| | - Hongbin Yang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, PR China
| | - Meiyan Shi
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, PR China
| | - Lin Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, PR China
| | - Wenyun Li
- Citrus Fruit Research Institute, Guiyang, Guizhou Province, PR China
| | - Fuhua Yan
- Lishui Academy of Agricultural and Forestry Sciences, Lishui, Zhejiang Province, PR China
| | - Yajuan Zhang
- Enshi Agriculture Bureau, Enshi, Hubei Province, PR China
| | - Hongyan Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, PR China
| | - Juan Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, PR China
| |
Collapse
|
10
|
Cesoniene L, Daubaras R, Bogacioviene S, Maruska A, Stankevicius M, Valatavicius A, Zych M, Ercisli S, Ilhan G. Investigations of Volatile Organic Compounds in Berries of Different Actinidia kolomikta (Rupr. & Maxim.) Maxim. Accessions. POL J FOOD NUTR SCI 2020. [DOI: 10.31883/pjfns/124029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
11
|
Cozzolino R, De Giulio B, Petriccione M, Martignetti A, Malorni L, Zampella L, Laurino C, Pellicano M. Comparative analysis of volatile metabolites, quality and sensory attributes of Actinidia chinensis fruit. Food Chem 2020; 316:126340. [DOI: 10.1016/j.foodchem.2020.126340] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/23/2020] [Accepted: 01/30/2020] [Indexed: 11/27/2022]
|
12
|
Research Advances on Biosynthesis, Regulation, and Biological Activities of Apocarotenoid Aroma in Horticultural Plants. J CHEM-NY 2020. [DOI: 10.1155/2020/2526956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Apocarotenoids, which play important roles in the growth and development of horticultural plants, are produced by the action of carotenoid cleavage oxygenase (CCO) family members or nonenzymatic cleavage actions. Apocarotenoids are commonly found in leaves, flowers, and fruits of many horticultural plants and participate in the formation of pigments, flavors, hormones, and signaling compounds. Some of them are recognized as important aroma components of fruit and flower with aromatic odor, such as βß-ionone, β-damascenone, and 6-methyl-5-hepten-2-one in tomato fruit, and have low odor thresholds with β-ionone having odor threshold of only 0.007 ppb. In this review, the main apocarotenoid aroma components in horticultural plants were listed, and factors influencing their production were discussed at first. Then, the biosynthetic pathway of apocarotenoid aromas was briefly introduced, and the CCDs gene family was highlighted, and the nonenzymatic production of apocarotenoid aromas was also mentioned. Next, chemical and molecular regulations of apocarotenoid aromas and their biological activities were summarized. Finally, further exploration aspects needed were suggested. We anticipate that this review can afford some crucial information for comprehensive application of apocarotenoid volatile compounds in horticultural plants.
Collapse
|
13
|
Integrated Methodologies (SWOT, TOWS, LCA) for Improving Production Chains and Environmental Sustainability of Kiwifruit and Baby Kiwi in Italy. SUSTAINABILITY 2017. [DOI: 10.3390/su9091621] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Neiens SD, Geißlitz SM, Steinhaus M. Aroma-active compounds in Spondias mombin L. fruit pulp. Eur Food Res Technol 2016. [DOI: 10.1007/s00217-016-2825-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Odour-active compounds in the traditional Armenian soup seasoning herb Heracleum transcaucasicum. Eur Food Res Technol 2016. [DOI: 10.1007/s00217-016-2815-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|