1
|
S N, C M, T SK, S RR, A K, K PM, D P, N SS. Development of point-of-need colourimetric, isothermal diagnostic assays for specific detection of Bacillus subtilis using shikimate dehydrogenase gene. Folia Microbiol (Praha) 2024:10.1007/s12223-024-01201-z. [PMID: 39331280 DOI: 10.1007/s12223-024-01201-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
The largest obstacle in the promotion of biopesticides is the existence of counterfeit products available in the market. Identification and quantification of antagonistic organisms in biopesticide products are the key to the reduction of spurious microbial pesticides. In this study, we have developed a simple, sensitive, isothermal-based colourimetric assay for specific detection of Bacillus subtilis from the biopesticide formulations and soil samples. A region specific to B. subtilis which codes for shikimate dehydrogenase was identified through in silico analysis. We employed conventional PCR, loop-mediated isothermal amplification (LAMP), recombinase polymerase amplification (RPA), and qPCR for specific detection of B. subtilis in soil samples and biopesticide formulations. Specificity tests showed that the PCR primers amplified an amplicon of 521 bp in four strains of B. subtilis only, and no amplification was found in negative control samples. Similarly, the LAMP assay showed sky blue colour in all four strains of B. subtilis and violet colour in negative control samples. Whereas in the RPA assay, upon the addition of SYBR Green dye, a bright green colour was seen in B. subtilis strains, while a brick-red colour was observed in negative control samples by visualizing under a UV transilluminator. The qPCR assay showed specific amplifications with a Ct value of 12 for B. subtilis strains and no amplification in negative control samples. In the sensitivity test, PCR could amplify DNA of B. subtilis up to 500 pg/µL. DNA concentration as low as 10 pg/µL was enough to show the colour change in the LAMP as well as the RPA assays, whereas the qPCR assay showed sensitivity till 100 pg/µL. All four diagnostic assays developed in the study have been validated in soil samples and B. subtilis-based biopesticides. Compared to conventional PCR, the qPCR assay has the advantage of quantification and visualizing the result in real-time, whereas LAMP and RPA assays have the benefits of being colourimetric and less time-consuming. The other advantages are that the results can be visualized with the naked eye, and these assays do not require a costly thermal cycler and gel documentation system. Hence, LAMP and RPA assays are highly suitable for developing point-of-need diagnostic kits and, in turn, help regulators assess the quality of biopesticides in the market.
Collapse
Affiliation(s)
- Nanditha S
- Department of Biotechnology, Jain University, Bengaluru, 560 027, India
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, 560 024, India
| | - Manjunatha C
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, 560 024, India.
| | - Shivakumara K T
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, 560 024, India
| | - Ramya R S
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, 560 024, India
| | - Kandan A
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, 560 024, India
| | - Prasannakumar M K
- Department of Plant Pathology, University of Agricultural Sciences, Bengaluru, 560 065, India
| | - Pramesh D
- Agricultural Research Station, Gangavathi, University of Agricultural Sciences, Raichur, 583 227, India
| | - Sushil S N
- Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, 560 024, India
| |
Collapse
|
2
|
Development of a Ladder-Shape Melting Temperature Isothermal Amplification (LMTIA) Assay for the Identification of Cassava Component in Sweet Potato Starch Noodles. Molecules 2022; 27:molecules27113414. [PMID: 35684350 PMCID: PMC9182543 DOI: 10.3390/molecules27113414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
Food authenticity has become increasingly important as a result of food adulteration. To identify the authenticity of sweet potato starch noodles, the ladder-shape melting temperature isothermal amplification (LMTIA) method of determining cassava (Manihot esculenta Crantz) DNA in sweet potato starch noodles was used. A set of primers targeted at the internal transcription spacer (ITS) of cassava was designed, genomic DNA was extracted, the LMTIA reaction temperature was optimized, and the specificity of the primer was verified with the genomic DNAs of cassava, sweet potato (Ipomoea batatas L.), Solanum tuberosum L., Zea mays L., Vigna radiate L., Triticum aestivum L., and Glycine max (L.) Merr. The sensitivity with the serially diluted genomic DNA of cassava and the suitability for the DNA extracted from sweet potato starch adulterated with cassava starch were tested. The LMTIA assay for identifying the cassava component in sweet potato starch noodles was established. At the optimal temperature of 52 °C, the primers could specifically distinguish a 0.01% (w/w) cassava component added to sweet potato starch. Additionally, the LMTIA method was applied to the cassava DNA detection of 31 sweet potato starch noodle samples purchased from retail markets in China. Of these, 14 samples were positive. The LMTIA assay could be a reliable method for the rapid detection of cassava components in sweet potato starch noodles, to protect the rights of consumers and to regulate the sale market order of starch noodles.
Collapse
|
3
|
Zhou M, Su H, Wang B, Wan C, Du W, Chen P, Feng X, Liu BF. A magnet-actuated microfluidic array chip for high-throughput pretreatment and amplification and detection of multiple pathogens. Analyst 2022; 147:2433-2441. [DOI: 10.1039/d2an00430e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The outbreak of global infectious diseases has posed a significant threat to public health, requiring the rapid and accurate diagnosis of pathogens promptly for society to implement immediate control measures to prevent widespread pandemics.
Collapse
Affiliation(s)
- Mengfan Zhou
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics – Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huiying Su
- School of Biological Engineering, Huainan Normal University, Huainan, Anhui 232038, China
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics – Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bangfeng Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics – Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chao Wan
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics – Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Du
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics – Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics – Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaojun Feng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics – Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics – Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
4
|
Singh M, Pal D, Sood P, Randhawa G. Loop-mediated isothermal amplification assays: Rapid and efficient diagnostics for genetically modified crops. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.106759] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
5
|
Zhang M, Ye J, He JS, Zhang F, Ping J, Qian C, Wu J. Visual detection for nucleic acid-based techniques as potential on-site detection methods. A review. Anal Chim Acta 2019; 1099:1-15. [PMID: 31986265 DOI: 10.1016/j.aca.2019.11.056] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 12/15/2022]
Abstract
Nucleic acid-based techniques could achieve highly sensitive detection by amplifying template molecules to millions of folds. It has been one of the most valued analytical methods and is applied in many detection fields, such as diagnosis of infectious diseases, food safety assurance and so on. Nucleic acid-based techniques consist of three steps: nucleic acid extraction, amplification, and product detection. Among them, the detection step plays a vital role because it shows the results directly. As the trend of detection is simple, rapid and instrument-free, it is of necessity to carry out visual detection, where the result read-out could be visible and distinguished by the naked eye. In this critical review, advanced visual detection methods are summarized and discussed in detail, aiming to promote the potential application in on-site detection.
Collapse
Affiliation(s)
- Mengyao Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Jing Ye
- Zhijiangnan Think Tank, Zhejiang Institute of Science and Technology Information, Hangzhou, 310006, China
| | - Jin-Song He
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China.
| | - Fang Zhang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Jianfeng Ping
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Cheng Qian
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Jian Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of on Site Processing Equipment for Agricultural Products, Ministry of Agriculture, Hangzhou, 310058, China.
| |
Collapse
|
6
|
Kaygusuz D, Vural S, Aytekin AÖ, Lucas SJ, Elitas M. DaimonDNA: A portable, low-cost loop-mediated isothermal amplification platform for naked-eye detection of genetically modified organisms in resource-limited settings. Biosens Bioelectron 2019; 141:111409. [PMID: 31207569 DOI: 10.1016/j.bios.2019.111409] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/13/2019] [Accepted: 06/02/2019] [Indexed: 01/08/2023]
Abstract
The steady increase in commercialization of genetically modified organisms (GMOs) demands low-cost, rapid and portable GMO-detection methods that are technically and economically sustainable. Traditional nucleic acid detection platforms are still expensive, immobile and generate complex read-outs to be analyzed by experienced personal. Herein, we report the development of a portable, rapid and user-friendly GMO-detection biosensor, DaimonDNA. The system specifically amplifies the target DNA using loop-mediated isothermal amplification (LAMP) and provides real-time, naked-eye detection with Hydroxynaphthol blue reagent in less than 30 min. The construction of the platform relies on 3D printing and off-the-shelf electronic components that makes it extremely low-cost (<25 Euro), light weight (108 g), mobile (6 × 6 × 3 cm) and suitable for field deployment. We present the detection of the soybean lectin gene as a species control, and P35S as a transgene element found in many GMO varieties. We confirmed specificity of the DaimonDNA biosensor using" RoundUp Ready (RRS)" and MON89788 soybean genomic DNA with P35S and lectin primer sets. We characterized sensitivity of our system using 76.92, 769.2 and 7692 copies of RRS soybean genomic DNA in a non-GMO background. We benchmarked the DNA amplification and detection efficiency of our system against a thermocycling machine by quantifying the images obtained from gel electrophoresis and showed that our system is comparable to most other reported isothermal amplification techniques. This system can also be used for widespread point-of-care or field-based testing that is infrequently performed due to the lack of rapid, inexpensive, user-friendly and portable methods.
Collapse
Affiliation(s)
- Doğukan Kaygusuz
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Istanbul, Turkey
| | - Sümeyra Vural
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Istanbul, Turkey
| | - Ali Özhan Aytekin
- Yeditepe University, Faculty of Engineering, Department of Genetics and Bioengineering, Kayisdagi Cad., 34755, Istanbul, Turkey
| | - Stuart James Lucas
- Sabanci University Nanotechnology Research and Application Center, 34956, Istanbul, Turkey
| | - Meltem Elitas
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center, 34956, Istanbul, Turkey.
| |
Collapse
|
7
|
Wang D, Wang Y, Zhu K, Shi L, Zhang M, Yu J, Liu Y. Detection of Cassava Component in Sweet Potato Noodles by Real-Time Loop-mediated Isothermal Amplification (Real-time LAMP) Method. Molecules 2019; 24:molecules24112043. [PMID: 31146324 PMCID: PMC6600232 DOI: 10.3390/molecules24112043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 11/17/2022] Open
Abstract
Sweet potato (Ipomoea batatas) noodles are a traditional Chinese food with a high nutritional value; however, starch adulteration is a big concern. The objective of this study was to develop a reliable method for the rapid detection of cassava (Manihot esculenta) components in sweet potato noodles to protect consumers from commercial adulteration. Five specific Loop-mediated Isothermal Amplification (LAMP) primers targeting the internal transcribed spacer (ITS) of cassava were designed, genomic DNA was extracted, the LAMP reaction system was optimized, and the specificity of the primers was verified with genomic DNA of cassava, Ipomoea batatas, Zea mays, and Solanum tuberosum; the detection limit was determined with a serial dilution of adulterated sweet potato starch with cassava starch, and the real-time LAMP method for the detection of the cassava-derived ingredient in sweet potato noodles was established. The results showed that the real-time LAMP method can accurately and specifically detect the cassava component in sweet potato noodles with a detection limit of 1%. Furthermore, the LAMP assay was validated using commercial sweet potato noodle samples, and results showed that 57.7% of sweet potato noodle products (30/52) from retail markets were adulterated with cassava starch in China. This study provides a promising solution for facilitating the surveillance of the commercial adulteration of sweet potato noodles from retail markets.
Collapse
Affiliation(s)
- Deguo Wang
- Key Laboratory of Biomarker Based Rapid-Detection Technology for Food Safety of Henan Province, Xuchang University, Xuchang 461000, China.
| | - Yongzhen Wang
- Key Laboratory of Biomarker Based Rapid-Detection Technology for Food Safety of Henan Province, Xuchang University, Xuchang 461000, China.
| | - Kai Zhu
- Key Laboratory of Biomarker Based Rapid-Detection Technology for Food Safety of Henan Province, Xuchang University, Xuchang 461000, China.
| | - Lijia Shi
- Key Laboratory of Biomarker Based Rapid-Detection Technology for Food Safety of Henan Province, Xuchang University, Xuchang 461000, China.
| | - Meng Zhang
- Key Laboratory of Biomarker Based Rapid-Detection Technology for Food Safety of Henan Province, Xuchang University, Xuchang 461000, China.
| | - Jianghan Yu
- Key Laboratory of Biomarker Based Rapid-Detection Technology for Food Safety of Henan Province, Xuchang University, Xuchang 461000, China.
| | - Yanhong Liu
- Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, PA 19038, USA.
| |
Collapse
|
8
|
Bektaş A. A Multiplex, Fluorescent, and Isothermal Method for Detecting Genetically Modified Maize. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-1041-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|