1
|
Zhu F, Cao J, Song Y, Yu P, Su E. Plant Protein-Derived Active Peptides: A Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20479-20499. [PMID: 38109192 DOI: 10.1021/acs.jafc.3c06882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Active peptides are a class of physiologically active protein fragments, which can be prepared from different sources. In the past few decades, the production of peptides with various effects from different plant proteins continues to receive academic attention. With advances in extraction, purification, and characterization techniques, plant protein-derived active peptides continue to be discovered. They have been proven to have various functional activities such as antioxidant, antihypertensive, immunomodulatory, antimicrobial, anti-inflammatory, antidiabetic, antithrombotic, and so on. In this review, we searched Web of Science and China National Knowledge Infrastructure for relevant articles published in recent years. There are 184 articles included in this manuscript. The current status of plant protein-derived active peptides is systematically introduced, including their sources, preparation, purification and identification methods, physiological activities, and applications in the food industry. Special emphasis has been placed on the problems of active peptide exploration and the future trend. Based on these, it is expected to provide theoretical reference for the further exploitation of plant protein-derived active peptides, and promote the healthy and rapid development of active peptide industry.
Collapse
Affiliation(s)
- Feng Zhu
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, P. R. China
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Jiarui Cao
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, P. R. China
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Yiting Song
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, P. R. China
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Pengfei Yu
- Suining County Runqi Investment Company, Limited, Xuzhou 221225, P. R. China
| | - Erzheng Su
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, P. R. China
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, Nanjing Forestry University, Nanjing 210037, P. R. China
- Bai Ma Future Food Research Institute, Nanjing 211225, P. R. China
| |
Collapse
|
2
|
Qin N, Chen C, Zhang N, Song L, Li Y, Guo L, Liu R, Zhang W. Bitter Almond Albumin ACE-Inhibitory Peptides: Purification, Screening, and Characterization In Silico, Action Mechanisms, Antihypertensive Effect In Vivo, and Stability. Molecules 2023; 28:6002. [PMID: 37630253 PMCID: PMC10458118 DOI: 10.3390/molecules28166002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Almond expeller is an undeveloped reservoir of bioactive peptides. In the current study, a zinc ion ligand Arg-Pro-Pro-Ser-Glu-Asp-Glu-Asp-Gln-Glu (RPPSEDEDQE) offering a noncompetitive inhibitory effect on ACE (IC50: 205.50 μmol·L-1) was identified from almond albumin hydrolysates via papain and thermolysin hydrolysis, subsequent chromatographic separation, and UPLC-Q-TOF-MS/MS analysis. Molecular docking simulated the binding modes of RPPSEDEDQE to ACE and showed the formation of hydrogen bonds between RPPSEDEDQE and seven active residues of ACE. Moreover, RPPSEDEDQE could bind to fifteen active sites of ACE by hydrophobic interactions, and link with the His387 and zinc ions of the zinc tetrahedral coordination. Ultraviolet wavelength scanning and Fourier-transformed infrared spectroscopy analysis revealed that RPPSEDEDQE can provide multiple binding sites for zinc ions. However, RPPSEDEDQE cannot bind with any central pocket of ACE, which was evidenced by an inhibition kinetics experiment. Additionally, the zinc-chelating capacity and inhibiting ability against ACE of RPPSEDEDQE were both not significantly reduced by the hydrolysis of gastrointestinal enzymes. A moderate to high dose of RPPSEDEDQE (100-150 mg·kg bw-1) significantly reduced the systolic and diastolic blood pressure of spontaneous hypertensive rats, but chelation with zinc ions decreased its antihypertensive efficiency. These results indicate that bitter almond albumin peptides may be used for lowering blood pressure.
Collapse
Affiliation(s)
- Nan Qin
- College of Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan 030619, China; (C.C.); (N.Z.); (L.S.); (Y.L.); (L.G.); (R.L.); (W.Z.)
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Durrani R, Meiyun Y, Yang B, Durand E, Delavault A, Bowen H, Weiwei H, Yiyang L, Lili S, Fei G. Identification of novel bioactive proteins and their produced oligopeptides from Torreya grandis nuts using proteomic based prediction. Food Chem 2022; 405:134843. [DOI: 10.1016/j.foodchem.2022.134843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/21/2022] [Accepted: 10/31/2022] [Indexed: 11/05/2022]
|
4
|
Isolation and identification of novel angiotensin I-converting enzyme (ACE) inhibitory peptides from Pony Seed and evaluation of the inhibitory mechanisms. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
5
|
Acevedo‐Juárez S, Guajardo‐Flores D, Heredia‐Olea E, Antunes‐Ricardo M. Bioactive peptides from nuts: A review. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sheccid Acevedo‐Juárez
- Centro de Biotecnología‐FEMSA Escuela de Ingeniería y Ciencias Tecnologico de Monterrey Av. Eugenio Garza Sada 2501 Sur Monterrey NL C.P. 64849 México
| | - Daniel Guajardo‐Flores
- Centro de Biotecnología‐FEMSA Escuela de Ingeniería y Ciencias Tecnologico de Monterrey Av. Eugenio Garza Sada 2501 Sur Monterrey NL C.P. 64849 México
| | - Erick Heredia‐Olea
- Centro de Biotecnología‐FEMSA Escuela de Ingeniería y Ciencias Tecnologico de Monterrey Av. Eugenio Garza Sada 2501 Sur Monterrey NL C.P. 64849 México
| | - Marilena Antunes‐Ricardo
- Centro de Biotecnología‐FEMSA Escuela de Ingeniería y Ciencias Tecnologico de Monterrey Av. Eugenio Garza Sada 2501 Sur Monterrey NL C.P. 64849 México
| |
Collapse
|
6
|
Wu Q, Luo F, Wang XL, Lin Q, Liu GQ. Angiotensin I-converting enzyme inhibitory peptide: an emerging candidate for vascular dysfunction therapy. Crit Rev Biotechnol 2021; 42:736-755. [PMID: 34634988 DOI: 10.1080/07388551.2021.1948816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Abnormal vasoconstriction, inflammation, and vascular remodeling can be promoted by angiotensin II (Ang II) in the renin-angiotensin system (RAS), leading to vascular dysfunction diseases such as hypertension and atherosclerosis. Researchers have recently focused on angiotensin I-converting enzyme inhibitory peptides (ACEIPs), that have desirable efficacy in vascular dysfunction therapy due to Ang II reduction by inhibiting ACE activity. Promising methods for the large-scale preparation of ACEIPs include selective enzymatic hydrolysis and microbial fermentation. Thus far, ACEIPs have been widely reported to be hydrolyzed from protein-rich sources, including animals, plants, and marine organisms, while many emerging microorganism-derived ACEIPs are theoretically biosynthesized through the nonribosomal peptide synthase (NRPS) pathway. Notably, vasodilatation, anti-inflammation, and vascular reconstruction reversal of ACEIPs are strongly correlated. However, the related molecular mechanisms underlying signal transduction regulation in vivo remain unclear. We provide a comprehensive update of the ACE-Ang II-G protein-coupled type 1 angiotensin receptor (AT1R) axis signaling and its functional significance for potential translation into therapeutic strategies, particularly targeting AT1R by ACEIPs, as well as specific related signaling pathways. Future studies are expected to verify the biosynthetic regulatory mechanism of ACEIPs via the NRPS pathway, the effect of gut microbiota metabolism on vascular dysfunction and rigorous studies of ACE-Ang II-AT1R signaling pathways mediated by ACEIPs in large animals and humans.
Collapse
Affiliation(s)
- Qiang Wu
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry and Technology, Changsha, China.,College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
| | - Feijun Luo
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry and Technology, Changsha, China.,College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Xiao-Ling Wang
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry and Technology, Changsha, China
| | - Qinlu Lin
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry and Technology, Changsha, China.,College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Gao-Qiang Liu
- International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
7
|
Huang Y, Jia F, Zhao J, Hou Y, Hu SQ. Novel ACE Inhibitory Peptides Derived from Yeast Hydrolysates: Screening, Inhibition Mechanisms and Effects on HUVECs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2412-2421. [PMID: 33593053 DOI: 10.1021/acs.jafc.0c06053] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The antihypertensive activity of yeast hydrolysate (YH) was confirmed in our previous study. However, the critical peptides in YH and the underlying mechanisms have not been fully elucidated. This study aimed to explore the angiotensin-converting enzyme (ACE) inhibitory peptides in YH and illustrate their molecular and cellular mechanisms. The potential of YH-derived peptides was evaluated by in silico methods, followed by in vitro verification. A new competitive ACE inhibitory peptide, VIPVPFF (V7), with an IC50 value of 10.27 μM, was screened. YH and V7 increased the nitric oxide (NO) levels, upregulated GUCY1A1 gene expression (approximately 15-fold), and functioned in several hypertension-related pathways in human umbilical vein endothelial cells (HUVECs). This study revealed the antihypertensive mechanisms of YH and V7, laying down a theoretical basis for their application.
Collapse
Affiliation(s)
- Yanbo Huang
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China
| | - Feng Jia
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China
| | - Jinsong Zhao
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China
| | - Yi Hou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China
| | - Song-Qing Hu
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), School of Food Sciences and Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China
| |
Collapse
|
8
|
Xue L, Yin R, Howell K, Zhang P. Activity and bioavailability of food protein-derived angiotensin-I-converting enzyme-inhibitory peptides. Compr Rev Food Sci Food Saf 2021; 20:1150-1187. [PMID: 33527706 DOI: 10.1111/1541-4337.12711] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/22/2022]
Abstract
Angiotensin-I-converting enzyme (ACE) inhibitory peptides are able to inhibit the activity of ACE, which is the key enzymatic factor mediating systemic hypertension. ACE-inhibitory peptides can be obtained from edible proteins and have the function of antihypertension. The amino acid sequences and the secondary structures of ACE-inhibitory peptides determine the inhibitory activities and stability. The resistance of ACE-inhibitory peptides to digestive enzymes and peptidase affect their antihypertensive bioactivity in vivo. In this paper, the mechanism of ACE-inhibition, sources of the inhibitory peptides, structure-activity relationships, stability during digestion, absorption and transportation of ACE-inhibitory peptides, and consumption of ACE-inhibitory peptides are reviewed, which provide guidance to the development of new functional foods and production of antihypertensive nutraceuticals and pharmaceuticals.
Collapse
Affiliation(s)
- Lu Xue
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China.,School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Rongxin Yin
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Kate Howell
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Pangzhen Zhang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
9
|
Stevens-Barrón JC, de la Rosa LA, Wall-Medrano A, Álvarez-Parrilla E, Rodríguez-Ramirez R, Robles-Zepeda RE, Astiazaran-García H. Chemical Composition and In Vitro Bioaccessibility of Antioxidant Phytochemicals from Selected Edible Nuts. Nutrients 2019; 11:E2303. [PMID: 31569705 PMCID: PMC6836022 DOI: 10.3390/nu11102303] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/20/2019] [Accepted: 09/25/2019] [Indexed: 12/27/2022] Open
Abstract
The ultimate health benefits of peanuts and tree nuts partially depend on the effective gastrointestinal delivery of their phytochemicals. The chemical composition and in vitro bioaccessibility of tocopherols, tocotrienols and phenolic compounds from peanuts and seven tree nuts were evaluated by analytical and chemometric methods. Total fat and dietary fiber (g 100 g-1) ranged from 34.2 (Emory oak acorn) to 72.5 (pink pine nut; PPN) and from 1.2 (PPN) to 22.5 (pistachio). Samples were rich in oleic and linoleic acids (56-87 g 100 g-1 oil). Tocopherols and tocotrienols (mg·kg-1) ranged from 48.1 (peanut) to 156.3 (almond) and 0 (almond, pecan) to 22.1 (PPN) and hydrophilic phenolics from 533 (PPN) to 12,896 (Emory oak acorn); flavonoids and condensed tannins (mg CE.100 g-1) ranged from 142 (white pine nut) to 1833 (Emory oak acorn) and 14 (PPN) to 460 (Emory oak acorn). Three principal components explained 90% of the variance associated with the diversity of antioxidant phytochemicals in samples. In vitro bioaccessibility of tocopherols, tocotrienols, hydrophilic phenolics, flavonoids, and condensed tannins ranged from 11-51%, 16-79%, 25-55%, 0-100%, and 0-94%, respectively. Multiple regression analyses revealed a potential influence of dietary fiber, fats and/or unsaturated fatty acids on phytochemical bioaccessibility, in a structure-specific manner.
Collapse
Affiliation(s)
- Jazmín C Stevens-Barrón
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, 32310 Ciudad Juárez, Mexico.
| | - Laura A de la Rosa
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, 32310 Ciudad Juárez, Mexico.
| | - Abraham Wall-Medrano
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, 32310 Ciudad Juárez, Mexico.
| | - Emilio Álvarez-Parrilla
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, 32310 Ciudad Juárez, Mexico.
| | - Roberto Rodríguez-Ramirez
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, 85000 Ciudad Obregón, Mexico.
| | - Ramón E Robles-Zepeda
- Departamento de Ciencias Químico-Biológicas, Universidad de Sonora, 83000 Hermosillo, Mexico.
| | - Humberto Astiazaran-García
- Coordinación de Nutrición, Centro de Investigación en Alimentación y Desarrollo, 83304 A.C. Hermosillo, Mexico.
| |
Collapse
|
10
|
Fang L, Geng M, Liu C, Wang J, Min W, Liu J. Structural and molecular basis of angiotensin-converting enzyme by computational modeling: Insights into the mechanisms of different inhibitors. PLoS One 2019; 14:e0215609. [PMID: 30998765 PMCID: PMC6472769 DOI: 10.1371/journal.pone.0215609] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/04/2019] [Indexed: 11/18/2022] Open
Abstract
Angiotensin-I converting enzyme (ACE) is a two-domain dipeptidylcarboxypeptidase involved in regulating blood pressure via the kallikrein-kininand renin-angiotensin-aldosterone complex. Therefore, ACE is a key drug target for the treatment of cardiovascular system diseases. At present many works are focus on searching for new inhibitory peptides of ACE to control the blood pressure. In order to exploit the interactions between ACE and its inhibitors, molecular dynamics simulations were used. The results showed that (a) the secondary structures of the three inhibitor-protein complexes did not change significantly; (b) root-mean-square deviation (RMSD), radius of gyration (Rg), and solvent-accessible surface area (SASA) values of Leu-Ile-Val-Thr (LIVT)-ACE complexes were significantly higher than that of other systems; (c) the backbone movement of LIVT was vigorous in Asp300-Val350, compared with that in Tyr-Leu-Val-Pro-His (YLVPH) and Tyr-Leu-Val-Arg(YLVR), as shown by the center-of-mass distance; and (d) the backbone movement of Asp300-Val350 may contribute to the interaction between ACE and its inhibitors. Our theoretical results will be helpful to further the design of specific inhibitors of ACE.
Collapse
Affiliation(s)
- Li Fang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun, China
| | - Mingxian Geng
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun, China
- Changchun Vocational Institute of Technology, Changchun, China
| | - Chunlei Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun, China
| | - Ji Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun, China
| | - Weihong Min
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun, China
- * E-mail:
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun, China
| |
Collapse
|