1
|
Yang X, Zhuang X, Shen R, Sang M, Meng Z, Cao G, Zang H, Nie L. In situ rapid evaluation method of quality of peach kernels based on near infrared spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124108. [PMID: 38447442 DOI: 10.1016/j.saa.2024.124108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/24/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
This study aimed to perform a rapid in situ assessment of the quality of peach kernels using near infrared (NIR) spectroscopy, which included identifications of authenticity, species, and origins, and amygdalin quantitation. The in situ samples without any pretreatment were scanned by a portable MicroNIR spectrometer, while their powder samples were scanned by a benchtop Fourier transform NIR (FT-NIR) spectrometer. To improve the performance of the in situ determination model of the portable NIR spectrometer, the two spectrometers were first compared in identification and content models of peach kernels for both in situ and powder samples. Then, the in situ sample spectra were transferred by using the improved principal component analysis (IPCA) method to enhance the performance of the in situ model. After model transfer, the prediction performance of the in situ sample model was significantly improved, as shown by the correlation coefficient in the prediction set (Rp), root means square error of prediction (RMSEP), and residual prediction deviation (RPD) of the in situ model reached 0.9533, 0.0911, and 3.23, respectively, and correlation coefficient in the test set (Rt) and root means square error of test (RMSET) reached 0.9701 and 0.1619, respectively, suggesting that model transfer could be a viable solution to improve the model performance of portable spectrometers.
Collapse
Affiliation(s)
- Xinya Yang
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Institute of Biochemical and Biotechnological Drug, Shandong University, Jinan 250012, Shandong, China
| | - Xiaoqi Zhuang
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Institute of Biochemical and Biotechnological Drug, Shandong University, Jinan 250012, Shandong, China
| | - Rongjing Shen
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Institute of Biochemical and Biotechnological Drug, Shandong University, Jinan 250012, Shandong, China
| | - Mengjiao Sang
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Institute of Biochemical and Biotechnological Drug, Shandong University, Jinan 250012, Shandong, China
| | - Zhaoqing Meng
- Shandong Hongjitang Pharmaceutical Group Co. Ltd., Jinan 250103, China
| | - Guiyun Cao
- Shandong Hongjitang Pharmaceutical Group Co. Ltd., Jinan 250103, China
| | - Hengchang Zang
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Institute of Biochemical and Biotechnological Drug, Shandong University, Jinan 250012, Shandong, China; Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan 250012, Shandong, China; National Glycoengineering Research Center, Shandong University, Jinan 250012, Shandong, China.
| | - Lei Nie
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Institute of Biochemical and Biotechnological Drug, Shandong University, Jinan 250012, Shandong, China.
| |
Collapse
|
2
|
Khan MKA, Abdulhameed AS, Alshahrani H, Algburi S. Chitosan/functionalized fruit stones as a highly efficient adsorbent biomaterial for adsorption of brilliant green dye: Comprehensive characterization and statistical optimization. Int J Biol Macromol 2024; 263:130465. [PMID: 38423427 DOI: 10.1016/j.ijbiomac.2024.130465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/02/2024] [Accepted: 02/24/2024] [Indexed: 03/02/2024]
Abstract
In this research, a highly efficient adsorbent biomaterial (hereinafter, CTS/PPS-HS) of chitosan/functionalized fruit stones (peach and plum) with H2SO4 was produced for the adsorption of brilliant green (BG) dye from aquatic systems. The developed biomaterial was characterized by several techniques like SEM-EDX, FTIR, XRD, BET, and pHpzc. To systematically optimize the adsorption performance of CTS/PPS-HS, the Box-Behnken design (BBD) based on response surface methodology (RSM) was attained. The factors considered for optimization included A: CTS/PPS-HS dosage (0.02-0.08 g), B: pH (4-10), and C: removal time (10-60 min). The pseudo-first-order and Langmuir isotherm models exhibited excellent agreement with the experimental results of BG adsorption by CTS/PPS-HS. The outstanding adsorption capacity (409.63 mg/g) of CTS/PPS-HS was obtained. The remarkable adsorption of BG onto CTS/PPS-HS can be primarily attributed to electrostatic forces between the acidic sites of CTS/PPS-HS and the BG cations, accompanied by interactions such as π-π, Yoshida H-bonding, n-π, and H-bond interactions. The current data underscores the significant potential inherent in combining biomass with CTS polymer to create an exceptionally effective adsorbent biomaterial tailored for the elimination of cationic dyes.
Collapse
Affiliation(s)
- Mohammad K A Khan
- Department of Mechanical Engineering, College of Engineering, Najran University, Najran, Saudi Arabia
| | - Ahmed Saud Abdulhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Anbar, Ramadi, Iraq; College of Engineering, University of Warith Al-Anbiyaa, Karbala, Iraq.
| | - Hassan Alshahrani
- Department of Mechanical Engineering, College of Engineering, Najran University, Najran, Saudi Arabia
| | - Sameer Algburi
- College of Engineering Technology, Al-Kitab University, Kirkuk 36015, Iraq
| |
Collapse
|
3
|
Petruccelli R, Bonetti A, Ciaccheri L, Ieri F, Ganino T, Faraloni C. Evaluation of the Fruit Quality and Phytochemical Compounds in Peach and Nectarine Cultivars. PLANTS (BASEL, SWITZERLAND) 2023; 12:1618. [PMID: 37111844 PMCID: PMC10144225 DOI: 10.3390/plants12081618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
Qualitative traits and chemical properties of 32 peach cultivars (yellow flesh and white flesh fruits) and 52 nectarine cultivars (yellow flesh and white flesh fruits) of different pomological characteristics is performed, and the correlation between cultivars and chemical characteristics is analyzed. Yellow nectarines have a higher variability in soluble solids concentration (SSC) and titratable acidity (TA) values. Evaluation of color parameters (a*, b*, L*) shows a significant interaction between pulp color (white vs. yellow) and types (peaches vs. nectarines) of fruit. The difference between yellow and white fruits is stronger in nectarines than in peaches. Sucrose is the main sugar detected in peach fruits, with a percentage content of 78.37% and 76.70% of the total sugar content in yellow and white peaches, respectively, and 78.29% and 78.12% in yellow and white nectarines, respectively. Variability is found among cultivars for the chemical compounds analyzed. The yellow flesh has higher amounts of total carotenoids and TPC, while white-flesh fruits present an average antioxidant value higher than yellow-flesh fruits. No significant correlation is found for polyphenol content and DPPH, while an interaction (p < 0.005) between neochlorogenic acid content and peaches and nectarines is evidenced, with a neochlorogenic acid content higher in nectarines than in peaches.
Collapse
Affiliation(s)
- Raffaella Petruccelli
- Institute of BioEconomy, National Research Council (CNR-IBE), Via Madonna del Piano n. 10, Sesto Fiorentino, 50019 Florence, Italy; (R.P.)
| | - Alessandra Bonetti
- Research Institute on Terrestrial Ecosystems, National Research Council (CNR-IRET), Via Madonna del Piano n. 10, Sesto Fiorentino, 10, 50019 Florence, Italy
| | - Leonardo Ciaccheri
- Institute of Applied Physics ‘Nello Carrara’ (IFAC), Via Madonna del Piano n. 10, Sesto Fiorentino, 50019 Florence, Italy
| | - Francesca Ieri
- Institute of Biosciences and Bioresources, National Research Council (IBBR-CNR), Via Madonna del Piano n. 10, Sesto Fiorentino, 50019 Florence, Italy
| | - Tommaso Ganino
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Cecilia Faraloni
- Institute of BioEconomy, National Research Council (CNR-IBE), Via Madonna del Piano n. 10, Sesto Fiorentino, 50019 Florence, Italy; (R.P.)
| |
Collapse
|
4
|
Nowicka P, Wojdyło A, Tkacz K, Turkiewicz IP. Quantitative and qualitative determination of carotenoids and polyphenolics compounds in selected cultivars of Prunus persica L. and their ability to in vitro inhibit lipoxygenase, cholinoesterase, α-amylase, α-glucosidase and pancreatic lipase. Food Chem X 2023; 17:100619. [PMID: 36974173 PMCID: PMC10039266 DOI: 10.1016/j.fochx.2023.100619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
The present study aimed to evaluate the content of polyphenols and carotenoids as well as the health-promoting properties (antioxidant, antidiabetic, antiobesity, antiaging, and anti-inflammatory activities) in selected peaches cultivated in Poland. The qualitative analysis of the tested cultivars showed that the content of polyphenols was dominated by flavan-3-ols, and phenolic acids. In turn, the performed analysis clearly indicated that the dominant carotenoid was β-carotene, which constituted on average 88% of the total amount of carotenoids. The general content of yellow pigments is as follows: all-trans-β-carotene > 13 cis-β-carotene > 9 cis-β-carotene > zeaxanthin > β-cryptoxanthin ≥ β-cryptoxanthin-myristate > β-cryptoxanthin-palmitate > crocin ≥ cis-violaxanthin > lutein. In addition, the present study showed that the peach fruit has a high potential in the context of inhibition of pancreatic lipase, which may indicate a potential antiobesity effect. However, the potential of the peaches to inhibit α-amylase, α-glucosidase, or 15-LOX has not been demonstrated.
Collapse
Affiliation(s)
- Paulina Nowicka
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Str., 51-630 Wrocław, Poland
| | - Aneta Wojdyło
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Str., 51-630 Wrocław, Poland
| | - Karolina Tkacz
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Str., 51-630 Wrocław, Poland
| | - Igor Piotr Turkiewicz
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Str., 51-630 Wrocław, Poland
| |
Collapse
|
5
|
Basyony M, Morsy AS, Soltan YA. Extracts of Apricot ( Prunus armeniaca) and Peach ( Prunus pérsica) Kernels as Feed Additives: Nutrient Digestibility, Growth Performance, and Immunological Status of Growing Rabbits. Animals (Basel) 2023; 13:ani13050868. [PMID: 36899727 PMCID: PMC10000093 DOI: 10.3390/ani13050868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
This study assessed the effects of the kernel extracts of apricot (AKE; Prunus armeniaca) and peach (PKE; Prunus pérsica), and their mixture (Mix) on growth efficiency, feed utilization, cecum activity, and health status, of growing rabbits. Weaned male New Zealand White rabbits at six weeks old [n = 84, 736 ± 24 SE g body weight (BW)] were randomly allotted to four dietary groups. The first group received no feed additives (control), the second and third groups received 0.3 mL/kg BW of AKE and PKE, respectively, and the fourth group received a mixture of AKE and PKE (1:1) at 0.3 mL/kg BW (Mix). Results indicated that 2(3h)-Furanone, 5-Heptyldihydro was found in abundance in both extracts, while 1,1-Dimethyl-2 Phenylethy L Butyrate and 1,3-Dioxolane, and 4-Methyl-2-Phenyl- were the most components detected in AKE and Cyclohexanol and 10-Methylundecan-4-olide were found in abundance in PKE. All the experimental extracts enhanced (p < 0.05) the growth performance, cecal fermentation parameters, and cecal L. acidiophilus and L. cellobiosus count, while PKE and the mixture treatments presented the highest (p = 0.001) total weight gain and average weight gain without affecting the feed intake. Rabbits that received the mix treatment had the highest (p < 0.05) nutrient digestibility and nitrogen retained, and the lowest (p = 0.001) cecal ammonia concentration. All the experimental extracts enhanced (p < 0.05) the blood antioxidant indicators (including total antioxidant capacity, catalase, and superoxide dismutase concentrations), and immune response of growing rabbits. In general, fruit kernel extracts are rich sources of bioactive substances that can be used as promising feed additives to promote the growth and health status of weaned rabbits.
Collapse
Affiliation(s)
- Mohamed Basyony
- Department of Poultry Nutrition, Animal Production Research Institute, Agriculture Research Center, Dokki, Giza 12126, Egypt
| | - Amr S. Morsy
- Livestock Research Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria 21934, Egypt
| | - Yosra A. Soltan
- Animal and Fish Production Department, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt
- Correspondence: or ; Tel.: +20-121099010
| |
Collapse
|
6
|
New Type of Tannins Identified from the Seeds of Cornus officinalis Sieb. et Zucc. by HPLC-ESI-MS/MS. Molecules 2023; 28:molecules28052027. [PMID: 36903273 PMCID: PMC10004147 DOI: 10.3390/molecules28052027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
There is a lack of information on the compound profile of Cornus officinalis Sieb. et Zucc. seeds. This greatly affects their optimal utilization. In our preliminary study, we found that the extract of the seeds displayed a strong positive reaction to the FeCl3 solution, indicating the presence of polyphenols. However, to date, only nine polyphenols have been isolated. In this study, HPLC-ESI-MS/MS was employed to fully reveal the polyphenol profile of the seed extracts. A total of 90 polyphenols were identified. They were classified into nine brevifolincarboxyl tannins and their derivatives, 34 ellagitannins, 21 gallotannins, and 26 phenolic acids and their derivatives. Most of these were first identified from the seeds of C. officinalis. More importantly, five new types of tannins were reported for the first time: brevifolincarboxyl-trigalloyl-hexoside, digalloyl-dehydrohexahydroxydiphenoyl (DHHDP)-hexdside, galloyl-DHHDP-hexoside, DHHDP-hexahydroxydiphenoyl(HHDP)-galloyl-gluconic acid, and peroxide product of DHHDP-trigalloylhexoside. Moreover, the total phenolic content was as high as 79,157 ± 563 mg gallic acid equivalent per 100 g in the seeds extract. The results of this study not only enrich the structure database of tannins, but also provide invaluable aid to its further utilization in industries.
Collapse
|
7
|
Masztalerz K, Dróżdż T, Nowicka P, Wojdyło A, Kiełbasa P, Lech K. The Effect of Nonthermal Pretreatment on the Drying Kinetics and Quality of Black Garlic. Molecules 2023; 28:962. [PMID: 36770627 PMCID: PMC9920204 DOI: 10.3390/molecules28030962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Black garlic is obtained from regular garlic (Allium sativum L.) through the aging process and consequently gains many health-promoting properties, including antidiabetic and antioxidant. However, the material is still prone to microbiological deterioration and requires a long time to dry due to its properties. Therefore, this study aimed to investigate the effect of various drying methods on the quality of black garlic as well as determine the influence of selected nonthermal pretreatments on the drying kinetics and quality of black garlic, which is especially important in the case of the materials that are difficult to dry. The Weibull model was chosen to describe drying kinetics. Additionally, color, water activity together with antioxidant activity, phenolic compounds, and antidiabetic potential were determined. This study found that the application of a pulsed electric field (PEF), a constant electric field (CEF) as well as a magnetic field (MF) significantly reduced the time of drying (by 32, 40, and 24 min for a PEF, a CEF, and a MF, respectively, compared to combined drying without the pretreatment), and resulted in high antidiabetic potential. However, the highest content of phenolic compounds (1123.54 and 1125.36 mg/100 g dm for VMD125 and CD3h-VMD, respectively) and antioxidant capacity (ABTS = 6.05 and 5.06 mmol Trolox/100 g dm for VMD500 and CD6h-VMD, respectively) were reported for black garlic treated by vacuum-microwave drying and combined convective pre-drying followed by vacuum-microwave drying. Overall, the nonthermal pretreatment decreased the time of drying and showed very good efficiency in maintaining the antidiabetic potential of black garlic, especially in the case of the materials pretreated by a constant electric field (IC50 = 99 and 56 mg/mL, for α-amylase and α-glucosidase, respectively).
Collapse
Affiliation(s)
- Klaudia Masztalerz
- Institute of Agricultural Engineering, The Faculty of Life Sciences and Technology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wroclaw, Poland
| | - Tomasz Dróżdż
- Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka 116 b, 30-149 Krakow, Poland
| | - Paulina Nowicka
- Department of Fruit, Vegetable and Nutraceutical Plant Technology, Wrocław University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - Aneta Wojdyło
- Department of Fruit, Vegetable and Nutraceutical Plant Technology, Wrocław University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - Paweł Kiełbasa
- Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka 116 b, 30-149 Krakow, Poland
| | - Krzysztof Lech
- Institute of Agricultural Engineering, The Faculty of Life Sciences and Technology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wroclaw, Poland
| |
Collapse
|
8
|
Corrêa PG, Moura LGS, Amaral ACF, do Amaral Souza FDC, Aguiar JPL, Aleluia RL, de Andrade Silva JR. Chemical and nutritional characterization of Ambelania duckei (Apocynaceae) an unexplored fruit from the Amazon region. Food Res Int 2023; 163:112290. [PMID: 36596195 DOI: 10.1016/j.foodres.2022.112290] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Ambelania duckei Markgr is a species of the Apocynaceae family, native to the Amazon region that is unexplored from a nutritional point of view and studied in relation to its chemical constituents. This work presents an unprecedented study of the proximate composition, lipid profile, a chromatographic analysis, and the antioxidant activity of extracts obtained from the pulp, peel and seeds of the fruit. The results showed that potassium, calcium, and magnesium stood out as the most abundant key minerals in the fruit peel and pulp, with an emphasis on the potassium present in the fruit pulp at 1750.0 mg/100 g. The peel had the highest content of total phenolics (374.86 mg/g), flavonoids (15.54 mg/g), tannins (27.45 mg/g) and O-diphenols (379.36 mg/g; 645.71 mg/g). The antioxidant activity (AA) was highest in the peel compared to the pulp in the DPPH, ABTS, and ORAC tests showing: IC50 of 29.82; 43.67; and 407.13 µg/mL, respectively but a lower activity for the Fe2+ chelator. The analysis of the lipid fractions from the peel, pulp, and seeds of the A. duckei fruit resulted in 14 types of fatty acids. The major fatty acids found in the three parts of the fruit were oleic acid (peel, 22.52 %), palmitic acid (pulp, 17.34 %), and linoleic acid (seeds, 47.99 %). The lipid profile and nutritional aspects had a PUFA/SFA ratio (0.4-1.8) in the different parts of the A. duckei fruit; the atherogenic and thrombogenic indexes were higher in the peel (1.23) and pulp (0.62), respectively. The ratio between the hypocholesterolemic and hypercholesterolemic fatty acids (0.5 - 3.8) calculated for the fruit are within the desirable range for a nutritious food. The chromatographic analysis of the volatile organic compounds (VOCs) from the peel and pulp of the fruit, identified 74 VOCs, of which 60.9 % are related to terpenes, and emit notes such as cucumber, green, fatty, floral, and mint, due to the presence of substances with OAVs > 10, especially α-ionone, 1,8-cineole, 2,4-decadienal, and dodecanal. The analysis of the MS and MS/MS spectra of the chromatograms obtained by LC- QTOF-HRMS led to the identification of 26 compounds in the peel, seeds and pulp of A. duckei, such as fatty acids, phenolic acid, flavonoids, proanthocyanidins, alkaloids, and terpenoids. The results show that the pulp of A. duckei has potential as nourishing food and the nutritional and chemical aspects of the peel can be applied to commercial applications.
Collapse
Affiliation(s)
- Pollyane Gomes Corrêa
- Chromatography Laboratory, Chemistry Department, Federal University of Amazonas, Manaus, AM, Brazil
| | | | - Ana Claudia Fernandes Amaral
- Laboratory of Medicinal Plants and Derivatives, Department of Chemistry of Natural Products, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Francisca das Chagas do Amaral Souza
- Brazilian National Institute for Research in the Amazon, Coordination Society of Environment and Health (COSAS) and Laboratory of Physical Chemistry of Food (LFQA), Manaus, AM, Brazil
| | - Jaime Paiva Lopes Aguiar
- Brazilian National Institute for Research in the Amazon, Coordination Society of Environment and Health (COSAS) and Laboratory of Physical Chemistry of Food (LFQA), Manaus, AM, Brazil
| | - Renê Lemos Aleluia
- Laboratory of Plant Genetics and Toxicology, Department of Biological Sciences Federal University of Espirito Santo, Vitoria, Espirito Santo, Brazil
| | | |
Collapse
|
9
|
From Biorefinery to Food Product Design: Peach (Prunus persica) By-Products Deserve Attention. FOOD BIOPROCESS TECH 2022; 16:1197-1215. [PMID: 36465719 PMCID: PMC9702882 DOI: 10.1007/s11947-022-02951-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/14/2022] [Indexed: 11/27/2022]
Abstract
There is an increasing demand for functional foods to attend the consumers preference for products with health benefits. Peach (Prunus persica), from Rosaceae family, is a worldwide well-known fruit, and its processing generates large amounts of by-products, consisting of peel, stone (seed shell + seed), and pomace, which represent about 10% of the annual global production, an equivalent of 2.4 million tons. Some studies have already evaluated the bioactive compounds from peach by-products, although, the few available reviews do not consider peach by-products as valuable materials for product design methodology. Thereby, a novelty of this review is related to the use of these mostly unexplored by-products as alternative sources of valuable components, encouraging the circular bioeconomy approach by designing new food products. Besides, this review presents recent peach production data, compiles briefly the extraction methods for the recovery of lipids, proteins, phenolics, and fiber from peach by-products, and also shows in vivo study reports on anti-inflammatory, anti-obesity, and anti-cerebral ischemia activities associated with peach components and by-product. Therefore, different proposals to recover bioactive fractions from peach by-products are provided, for further studies on food-product design.
Collapse
|
10
|
Farag MA, Bahaa Eldin A, Khalifa I. Valorization and extraction optimization of Prunus seeds for food and functional food applications: A review with further perspectives. Food Chem 2022; 388:132955. [DOI: 10.1016/j.foodchem.2022.132955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 01/06/2023]
|
11
|
Kandemir K, Piskin E, Xiao J, Tomas M, Capanoglu E. Fruit Juice Industry Wastes as a Source of Bioactives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6805-6832. [PMID: 35544590 PMCID: PMC9204825 DOI: 10.1021/acs.jafc.2c00756] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 05/15/2023]
Abstract
Food processing sustainability, as well as waste minimization, are key concerns for the modern food industry. A significant amount of waste is generated by the fruit juice industry each year. In addition to the economic losses caused by the removal of these wastes, its impact on the environment is undeniable. Therefore, researchers have focused on recovering the bioactive components from fruit juice processing, in which a great number of phytochemicals still exist in the agro-industrial wastes, to help minimize the waste burden as well as provide new sources of bioactive compounds, which are believed to be protective agents against certain diseases such as cardiovascular diseases, cancer, and diabetes. Although these wastes contain non-negligible amounts of bioactive compounds, information on the utilization of these byproducts in functional ingredient/food production and their impact on the sensory quality of food products is still scarce. In this regard, this review summarizes the most recent literature on bioactive compounds present in the wastes of apple, citrus fruits, berries, stoned fruits, melons, and tropical fruit juices, together with their extraction techniques and valorization approaches. Besides, on the one hand, examples of different current food applications with the use of these wastes are provided. On the other hand, the challenges with respect to economic, sensory, and safety issues are also discussed.
Collapse
Affiliation(s)
- Kevser Kandemir
- Faculty
of Engineering and Natural Sciences, Food Engineering Department, Istanbul Sabahattin Zaim University, Halkali, 34303 Istanbul, Turkey
| | - Elif Piskin
- Faculty
of Engineering and Natural Sciences, Food Engineering Department, Istanbul Sabahattin Zaim University, Halkali, 34303 Istanbul, Turkey
| | - Jianbo Xiao
- Department
of Analytical Chemistry and Food Science, Faculty of Food Science
and Technology, University of Vigo-Ourense
Campus, E-32004 Ourense, Spain
- International
Research Center for Food Nutrition and Safety, Jiangsu University, 212013 Zhenjiang, China
| | - Merve Tomas
- Faculty
of Engineering and Natural Sciences, Food Engineering Department, Istanbul Sabahattin Zaim University, Halkali, 34303 Istanbul, Turkey
| | - Esra Capanoglu
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| |
Collapse
|
12
|
Munekata PES, Yilmaz B, Pateiro M, Kumar M, Domínguez R, Shariati MA, Hano C, Lorenzo JM. Valorization of by-products from Prunus genus fruit processing: Opportunities and applications. Crit Rev Food Sci Nutr 2022; 63:7795-7810. [PMID: 35285755 DOI: 10.1080/10408398.2022.2050350] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Food processing, especially the juice industry, is an important sector that generate million tons of residues every. Due to the increasing concern about waste generation and the interest in its valorization, the reutilization of by-products generated from the processing of popular fruits of the Prunus genus (rich in high-added value compounds) has gained the spotlight in the food area. This review aims to provide an overview of the high added-value compounds found in the residues of Prunus fruits (peach, nectarine, donut peach, plum, cherry, and apricot) processing and applications in the food science area. Collective (pomace) and individual (kernels, peels, and leaves) residues from Prunus fruits processing contains polyphenols (especially flavonoids and anthocyanins), lipophilic compounds (such as unsaturated fatty acids, carotenes, tocopherols, sterols, and squalene), proteins (bioactive peptides and essential amino acids) that are wasted. Applications are increasingly expanding from the flour from the kernels to encapsulated bioactive compounds, active films, and ingredients with technological relevance for the quality of bread, cookies, ice cream, clean label meat products and extruded foods. Advances to increasing safety has also been reported against anti-nutritional (amygdalin) and toxic compounds (aflatoxin and pesticides) due to advances in emerging processing technologies and strategic use of resources.
Collapse
Affiliation(s)
| | - Birsen Yilmaz
- Department of Nutrition and Dietetics, Cukurova University, Adana, Turkey
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Ourense, Spain
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, India
| | | | - Mohammad Ali Shariati
- Department of Scientific Research, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), Moscow, Russian Federation
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, Campus Eure et Loir, Orleans University, Chartres, France
- Le Studium Institue for Advanced Studies, Orleans, France
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidade de Vigo, Ourense, Spain
| |
Collapse
|
13
|
Chen HJ, Huang JY, Ko CY. Peach Kernel Extracts Inhibit Lipopolysaccharide-Induced Activation of HSC-T6 Hepatic Stellate Cells. Int J Clin Pract 2022; 2022:4869973. [PMID: 36105786 PMCID: PMC9444415 DOI: 10.1155/2022/4869973] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/06/2022] [Indexed: 11/21/2022] Open
Abstract
There is an important role for hepatic stellate cells (HSCs) in liver fibrosis. As it stands, many traditional Chinese medicine formulations can effectively improve liver fibrosis, whether it is clinically used or in animal studies; however, the efficacy and mechanism of the main formulations remain unclear, including the peach kernel, which contains numerous phytochemicals with a wide range of biological activities. The purpose of this study was to investigate peach kernel's anti-liver fibrosis effects. In this study, peach kernel extracts inhibited lipopolysaccharide (LPS) activation in HSC-T6 cells and the expression of α-smooth muscle actin and connective tissue growth factor induced by LPS in HSC-T6 cells. Furthermore, peach kernel extracts inhibited signal transducers involving protein kinase B and mitogen-activated protein kinase, which regulate downstream genes associated with inflammation. As a result, peach kernel extracts inhibited inflammatory responses and subsequently inhibited LPS-induced transformation of activated HSC-T6 cells.
Collapse
Affiliation(s)
- Hong-Jie Chen
- Department of Clinical Nutrition, People's Hospital of Leshan, Leshan 614000, China
| | - Jin-Yuan Huang
- Department of Clinical Nutrition, Suzhou Dushu Lake Hospital, Suzhou 215123, Jiangsu, China
| | - Chih-Yuan Ko
- Department of Clinical Nutrition, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
- School of Public Health, Fujian Medical University, Fuzhou 350122, Fujian, China
| |
Collapse
|
14
|
Vieira MV, Turkiewicz IP, Tkacz K, Fuentes-Grünewald C, Pastrana LM, Fuciños P, Wojdyło A, Nowicka P. Microalgae as a Potential Functional Ingredient: Evaluation of the Phytochemical Profile, Antioxidant Activity and In-Vitro Enzymatic Inhibitory Effect of Different Species. Molecules 2021; 26:7593. [PMID: 34946676 PMCID: PMC8707863 DOI: 10.3390/molecules26247593] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
The functional food market has been in a state of constant expansion due to the increasing awareness of the impact of the diet on human health. In the search for new natural resources that could act as a functional ingredient for the food industry, microalgae represent a promising alternative, considering their high nutritional value and biosynthesis of numerous bioactive compounds with reported biological properties. In the present work, the phytochemical profile, antioxidant activity, and enzymatic inhibitory effect aiming at different metabolic disorders (Alzheimer's disease, Type 2 diabetes, and obesity) were evaluated for the species Porphyridium purpureum, Chlorella vulgaris, Arthorspira platensis, and Nannochloropsis oculata. All the species presented bioactive diversity and important antioxidant activity, demonstrating the potential to be used as functional ingredients. Particularly, P. purpureum and N. oculata exhibited higher carotenoid and polyphenol content, which was reflected in their superior biological effects. Moreover, the species P. purpureum exhibited remarkable enzymatic inhibition for all the analyses.
Collapse
Affiliation(s)
- Marta Vinha Vieira
- Department of Fruit, Vegetable and Nutraceutical Plant Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 37 Chełmonskiego Street, 51-630 Wrocław, Poland; (M.V.V.); (I.P.T.); (K.T.)
- International Iberian Nanotechnology Laboratory, Food Processing and Nutrition Research Group, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (L.M.P.); (P.F.)
| | - Igor Piotr Turkiewicz
- Department of Fruit, Vegetable and Nutraceutical Plant Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 37 Chełmonskiego Street, 51-630 Wrocław, Poland; (M.V.V.); (I.P.T.); (K.T.)
| | - Karolina Tkacz
- Department of Fruit, Vegetable and Nutraceutical Plant Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 37 Chełmonskiego Street, 51-630 Wrocław, Poland; (M.V.V.); (I.P.T.); (K.T.)
| | | | - Lorenzo M. Pastrana
- International Iberian Nanotechnology Laboratory, Food Processing and Nutrition Research Group, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (L.M.P.); (P.F.)
| | - Pablo Fuciños
- International Iberian Nanotechnology Laboratory, Food Processing and Nutrition Research Group, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (L.M.P.); (P.F.)
| | - Aneta Wojdyło
- Department of Fruit, Vegetable and Nutraceutical Plant Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 37 Chełmonskiego Street, 51-630 Wrocław, Poland; (M.V.V.); (I.P.T.); (K.T.)
| | - Paulina Nowicka
- Department of Fruit, Vegetable and Nutraceutical Plant Technology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 37 Chełmonskiego Street, 51-630 Wrocław, Poland; (M.V.V.); (I.P.T.); (K.T.)
| |
Collapse
|
15
|
Emerging Green Techniques for the Extraction of Antioxidants from Agri-Food By-Products as Promising Ingredients for the Food Industry. Antioxidants (Basel) 2021; 10:antiox10091417. [PMID: 34573049 PMCID: PMC8471374 DOI: 10.3390/antiox10091417] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 09/01/2021] [Indexed: 11/18/2022] Open
Abstract
Nowadays, the food industry is heavily involved in searching for green sources of valuable compounds, to be employed as potential food ingredients, to cater to the evolving consumers’ requirements for health-beneficial food ingredients. In this frame, agri-food by-products represent a low-cost source of natural bioactive compounds, including antioxidants. However, to effectively recover these intracellular compounds, it is necessary to reduce the mass transfer resistances represented by the cellular envelope, within which they are localized, to enhance their extractability. To this purpose, emerging extraction technologies, have been proposed, including Supercritical Fluid Extraction, Microwave-Assisted Extraction, Ultrasound-Assisted Extraction, High-Pressure Homogenization, Pulsed Electric Fields, High Voltage Electrical Discharges. These technologies demonstrated to be a sustainable alternative to conventional extraction, showing the potential to increase the extraction yield, decrease the extraction time and solvent consumption. Additionally, in green extraction processes, also the contribution of solvent selection, as well as environmental and economic aspects, represent a key factor. Therefore, this review focused on critically analyzing the main findings on the synergistic effect of low environmental impact technologies and green solvents towards the green extraction of antioxidants from food by-products, by discussing the main associated advantages and drawbacks, and the criteria of selection for process sustainability.
Collapse
|
16
|
Spychaj R, Kucharska AZ, Szumny A, Przybylska D, Pejcz E, Piórecki N. Potential valorization of Cornelian cherry (Cornus mas L.) stones: Roasting and extraction of bioactive and volatile compounds. Food Chem 2021; 358:129802. [PMID: 33933979 DOI: 10.1016/j.foodchem.2021.129802] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/31/2021] [Accepted: 04/15/2021] [Indexed: 10/21/2022]
Abstract
This study aimed to characterize the antioxidant potential, bioactive and volatile compounds of the stones from fruits of Cornus mas. Both fresh and roasted stones show a high antioxidant potential (166.48-509.74 μmol TE/g dw stones), which significantly depends on the cultivars. The roasted stones preserved 43.6% (DPPH; 'Raciborski') to 97.2% (FRAP; 'Alesha') of the antioxidant activity of the non-roasted stones. In the stones, two iridoids and ellagic acid were determined. During roasting, loganic acid remained stable, whereas cornuside was completely degraded. The analyses showed a 30-fold increase in the concentration of ellagic acid and in the formation of two of its derivatives. The major aroma compound of the roasted stones was furfural, but we also identified 18 pyrazine derivatives. This study is the first attempt to valorize Cornelian cherry stones via roasting. The roasted stones can be a coffee substitute, or aromatic and bioactive additions to cereal coffees.
Collapse
Affiliation(s)
- Radosław Spychaj
- Department of Fermentation and Cereals Technology, Wroclaw University of Environmental and Life Sciences, J. Chełmońskiego 37, 51-630 Wrocław, Poland.
| | - Alicja Z Kucharska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wroclaw University of Environmental and Life Sciences, J. Chełmońskiego 37, 51-630 Wrocław, Poland
| | - Antoni Szumny
- Department of Chemistry, Wroclaw University of Environmental and Life Sciences, C. K. Norwida 25, 50-375 Wrocław, Poland
| | - Dominika Przybylska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wroclaw University of Environmental and Life Sciences, J. Chełmońskiego 37, 51-630 Wrocław, Poland
| | - Ewa Pejcz
- Department of Fermentation and Cereals Technology, Wroclaw University of Environmental and Life Sciences, J. Chełmońskiego 37, 51-630 Wrocław, Poland
| | - Narcyz Piórecki
- Arboretum and Institute of Physiography in Bolestraszyce, 37-700 Przemyśl, Poland; Institute of Physical Culture Sciences, Medical College, University of Rzeszów, Towarnickiego 3, 35-959 Rzeszow, Poland
| |
Collapse
|
17
|
Nutritional, Phytochemical Characteristics and In Vitro Effect on α-Amylase, α-Glucosidase, Lipase, and Cholinesterase Activities of 12 Coloured Carrot Varieties. Foods 2021; 10:foods10040808. [PMID: 33918549 PMCID: PMC8070462 DOI: 10.3390/foods10040808] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 11/16/2022] Open
Abstract
Twelve carrot varieties with different colours (purple, orange, yellow, and white) and sizes (normal, mini, and micro) were analysed for prospective health benefits (activities against diabetes-, obesity-, and aging- related enzymes-α-amylase, α-glucosidase, lipase, acetylocholinesterase, and butyrylocholinesterase, respectively) and nutritional contents (polyphenols, carotenoids, and chlorophylls). The conducted studies showed that the highest content of total polyphenols was observed in different sizes of purple carrots. The normal yellow and mini orange carrots demonstrated the highest content of carotenoids. According to the study results, the mini purple carrot showed the highest activities against diabetes-related enzyme (α-glucosidase); furthermore, the highest activities of cholinesterase inhibitors were observed for micro purple carrot. Nevertheless, normal orange carrot exhibited the highest activity against lipase. The results of the present study showed that purple-coloured carrot samples of different sizes (normal, mini, and micro) exhibited attractive nutritional contents. However, their pro-health effects (anti-diabetic, anti-obesity, anti-aging) should not be seen in the inhibition of amylase, glucosidase, lipase, and cholinesterase. Probably the mechanisms of their action are more complex, and the possible health-promoting effect results from the synergy of many compounds, including fibre, phytochemicals, vitamins, and minerals. Therefore, it would be worth continuing research on different varieties of carrots.
Collapse
|
18
|
Phenolic profiles, bioaccessibility and antioxidant activity of plum (Prunus Salicina Lindl). Food Res Int 2021; 143:110300. [PMID: 33992320 DOI: 10.1016/j.foodres.2021.110300] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022]
Abstract
Plum (Prunus Salicina Lindl) is a rich source of phenolic compounds. However, the bound phenolics and its bioaccessibility and antioxidant activity remain unclear. Hence, the purpose of this study was to determine: 1) phenolic profiles of plum, including both free and bound phenolic fractions, 2) bioaccessibility of phenolic compounds in plum during simulated gastrointestinal digestions, 3) their antioxidant properties. A total of 17 phenolic compounds were identified by UPLC-Q-Exactive Orbitrap/MS with most epicatechin, neochlorogenic acid and procyanidin B2 in the free phenolics fraction, while catechin and epicatechin was the main compounds in the bound phenolics fraction. After the gastrointestinal digestion phase, the most bioaccessible phenolics were quercetin-pentoside (61.64%), cyanidin-3-O-glucoside (43.26%), and naringenin-7-O-β-D-glucoside (42.04%). The antioxidant capacity of both undigested plum and its digested fractions showed a positive correlation with the total phenolics, and with specific individual phenolic compounds such as neochlorogenic acid, epicatechin and procyanidin B2 in undigested plum whereas catechin, neochlorogenic acid, and epicatechin in digested one. The results confirm that bound fraction of plum contribution to the total phenolic content must be taken into account in the assessment of the improving human health effects of plum.
Collapse
|
19
|
High-Throughput Screening and Characterization of Phenolic Compounds in Stone Fruits Waste by LC-ESI-QTOF-MS/MS and Their Potential Antioxidant Activities. Antioxidants (Basel) 2021; 10:antiox10020234. [PMID: 33557299 PMCID: PMC7914583 DOI: 10.3390/antiox10020234] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/20/2022] Open
Abstract
Stone fruits, including peach (Prunus persica L.), nectarine (Prunus nucipersica L.), plum (Prunus domestica L.) and apricot (Prunus armeniaca L.) are common commercial fruits in the market. However, a huge amount of stone fruits waste is produced throughout the food supply chain during picking, handling, processing, packaging, storage, transportation, retailing and final consumption. These stone fruits waste contain high phenolic content which are the main contributors to the antioxidant potential and associated health benefits. The antioxidant results showed that plum waste contained higher concentrations of total phenolic content (TPC) (0.94 ± 0.07 mg gallic acid equivalents (GAE)/g) and total flavonoid content (TFC) (0.34 ± 0.01 mg quercetin equivalents (QE)/g), while apricot waste contained a higher concentration of total tannin content (TTC) (0.19 ± 0.03 mg catechin equivalents (CE)/g) and DPPH activity (1.47 ± 0.12 mg ascorbic acid equivalents (AAE)/g). However, nectarine waste had higher antioxidant capacity in ferric reducing-antioxidant power (FRAP) (0.98 ± 0.02 mg AAE/g) and total antioxidant capacity (TAC) (0.91 ± 0.09 mg AAE/g) assays, while peach waste showed higher antioxidant capacity in 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assay (0.43 ± 0.09 mg AAE/g) as compared to other stone fruits waste. Qualitative and quantitative phenolic analysis of Australian grown stone fruits waste were conducted by liquid chromatography coupled with electrospray-ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS/MS) and HPLC-photodiode array detection (PDA). The LC-ESI-QTOF-MS/MS result indicates that 59 phenolic compounds were tentatively characterized in peach (33 compounds), nectarine (28), plum (38) and apricot (23). The HPLC-PDA indicated that p-hydroxybenzoic acid (18.64 ± 1.30 mg/g) was detected to be the most dominant phenolic acid and quercetin (19.68 ± 1.38 mg/g) was the most significant flavonoid in stone fruits waste. Hence, it could be concluded that stone fruit waste contains various phenolic compounds and have antioxidant potential. The results could support the applications of these stone fruit wastes in other food, feed, nutraceutical and pharmaceutical industries.
Collapse
|
20
|
Xue J, Sheng X, Zhang BJ, Zhang C, Zhang G. The Sirtuin-1 relied antioxidant and antiaging activity of 5,5'-diferulic acid glucoside esters derived from corn bran by enzymatic method. J Food Biochem 2020; 44:e13519. [PMID: 33078415 DOI: 10.1111/jfbc.13519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/14/2020] [Accepted: 09/24/2020] [Indexed: 11/30/2022]
Abstract
Maize is the food crop with the highest total output in the world. However, corn bran is only a by-product with low price. The 5,5'-diferulic acid glucoside esters (DFG) were obtained from corn bran using the enzymatic method. DFG showed obvious antioxidant capacity in cell, Caenorhabditis elegans (C. elegans) and in mouse. DFG decreased ROS and MDA content in 500 μM H2 O2 stimulated ARPE-19 cells to 48.6% and 32.2%, respectively. DFG decreased ROS content in C. elegans to 49.1% and MDA content in acute ethanol (50%, 12 ml/kg) stimulated mouse to 30.4%. DFG also increased SOD protein content significantly in cell, C. elegans and mouse to 175.5%, 120.1%, and 126.2%, respectively. DFG significantly extended the lifespan of C. elegans both under heat stress and natural situation. The median survival time was prolonged to 133.3% and 116.7%, respectively. This capacity relied on the SIR-2.1 activity. SIR-2.1 is an ortholog of human Sirtuin-1 (SIRT-1). DFG also upregulated SIRT-1 and PCG-1α expression level obviously in H2 O2 -stimulated ARPE-19 cells (to 134.4% and 127.1%, respectively) and in acute ethanol stimulated mouse eyes (to 135.1% and 111.5%, respectively) and liver (to 123.3% and 113.6%, respectively). These results indicate that DFG has multiple bioactivities. Our research provides a new application prospect of corn bran. And to our best knowledge, this is the first time, the sirtuins-relied lifespan extension activity of the 5,5'-diferulic acid extracted from corn bran was reported. PRACTICAL APPLICATIONS: The traditional method for extracting diferulic acid from corn bran is to use the strong alkali. Obviously, this is not welcomed by the food industry. We employed the biological enzyme method in a relatively mild pH range during the extraction process. It is more environmentally friendly and more economical. DFG can be added as a raw material for functional foods like yogurt, fruit juice, and cereals. As well, the solid precipitate obtained after extraction can also be used as high-quality dietary fiber to produce functional food. Meanwhile, concerning for the 5,5'-diferulic acid derived from corn bran, the relevant research is still not abundant. And to our best knowledge, we have reported for the first time about the effect of this kinds of diferulic acid on prolonging life span and its SIRT-1-dependent activity. It also provides a new perspective for the study of diferulic acid.
Collapse
Affiliation(s)
- Jianbin Xue
- School of Life Science, Jilin University, Changchun, China
| | - Xue Sheng
- School of Life Science, Jilin University, Changchun, China
| | | | - Cijia Zhang
- School of Life Science, Jilin University, Changchun, China
| | - Guirong Zhang
- School of Life Science, Jilin University, Changchun, China
| |
Collapse
|
21
|
Przybylska D, Kucharska AZ, Cybulska I, Sozański T, Piórecki N, Fecka I. Cornus mas L. Stones: A Valuable By-Product as an Ellagitannin Source with High Antioxidant Potential. Molecules 2020; 25:E4646. [PMID: 33053845 PMCID: PMC7587210 DOI: 10.3390/molecules25204646] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/01/2020] [Accepted: 10/10/2020] [Indexed: 02/07/2023] Open
Abstract
The stone of Cornus mas L. remains the least known morphological part of this plant, whereas the fruit is appreciated for both consumption purposes and biological activity. The stone is considered to be a byproduct of fruit processing and very little is known about its phytochemical composition and biological properties. In this study, the complete qualitative determination of hydrolyzable tannins, their quantitative analysis, total polyphenolic content, and antioxidant properties of the stone of C. mas are presented for the first time. The 37 identified compounds included the following: various gallotannins (11), monomeric ellagitannins (7), dimeric ellagitannins (10), and trimeric ellagitannins (7). The presence of free gallic acid and ellagic acid was also reported. Our results demonstrate that C. mas stone is a source of various bioactive hydrolyzable tannins and shows high antioxidant activity which could allow potential utilization of this raw material for recovery of valuable pharmaceutical or nutraceutical substances. The principal novelty of our findings is that hydrolyzable tannins, unlike other polyphenols, have been earlier omitted in the evaluation of the biological activities of C. mas. Additionally, the potential recovery of these bioactive chemicals from the byproduct is in line with the ideas of green chemistry and sustainable production.
Collapse
Affiliation(s)
- Dominika Przybylska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland;
| | - Alicja Z. Kucharska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wrocław, Poland;
| | - Iwona Cybulska
- Earth and Life Institute, Université Catholique de Louvain, Croix du Sud 2, 1348 Louvain-la-Neuve, Belgium;
| | - Tomasz Sozański
- Department of Pharmacology, Wrocław Medical University, Jana Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland;
| | - Narcyz Piórecki
- Arboretum and Institute of Physiography in Bolestraszyce, 37-700 Przemyśl, Poland;
- Institute of Physical Culture Sciences, Medical College, University of Rzeszów, Towarnickiego 3, 35-959 Rzeszów, Poland
| | - Izabela Fecka
- Department of Pharmacognosy and Herbal Medicines, Wroclaw Medical University, Borowska 211 A, 50-556 Wrocław, Poland;
| |
Collapse
|
22
|
Coman V, Teleky BE, Mitrea L, Martău GA, Szabo K, Călinoiu LF, Vodnar DC. Bioactive potential of fruit and vegetable wastes. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 91:157-225. [PMID: 32035596 DOI: 10.1016/bs.afnr.2019.07.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Fruits and vegetables are essential for human nutrition, delivering a substantial proportion of vitamins, minerals, and fibers in our daily diet. Unfortunately, half the fruits and vegetables produced worldwide end up as wastes, generating environmental issues caused mainly by microbial degradation. Most wastes are generated by industrial processing, the so-called by-products. These by-products still contain many bioactive compounds post-processing, such as macronutrients (proteins and carbohydrates) and phytochemicals (polyphenols and carotenoids). Recently, the recovery of these bioactive compounds from industry by-products has received significant attention, mainly due to their possible health benefits for humans. This chapter focuses on the bioactive potential of fruit and vegetable by-products with possible applications in the food industry (functional foods) and in the health sector (nutraceuticals).
Collapse
Affiliation(s)
- Vasile Coman
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Bernadette-Emőke Teleky
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Laura Mitrea
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania; Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Gheorghe Adrian Martău
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania; Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Katalin Szabo
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Lavinia-Florina Călinoiu
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania; Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Dan Cristian Vodnar
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania; Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania.
| |
Collapse
|