1
|
Alabdalall AH. Gas chromatography-mass spectrometry analysis of fatty acids in healthy and Aspergillus niger MH078571.1-infected Arabica coffee beans. PLoS One 2024; 19:e0293369. [PMID: 38165986 PMCID: PMC10760658 DOI: 10.1371/journal.pone.0293369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/10/2023] [Indexed: 01/04/2024] Open
Abstract
The organic composition of Arabica coffee beans, particularly fatty acids, significantly influences their overall quality. After measuring its composition of fatty acids, it contained a high percentage of saturated fatty acids (SFA), including caprylic, lauric, myristic, palmitic, margaric, fat, and orchid. Moreover, the sample contained unsaturated fatty acids (USFA), namely palmitoleic acid (C16:1), oleic acid (C18:1), linoleic acid (C18:2), and alpha-linoleic acid (C18:3). Coffee beans are susceptible to infection by fungi during storage, the development of which has adverse effects on the beans. The present study aimed to examine the impact of Aspergillus niger MH078571.1 infection on the diversity and abundance of fatty acids in green Arabica coffee beans. The impact of Aspergillus niger on the consumption of fatty acids in Arabica coffee beans was assessed. The findings of the study indicate that the duration of storage had a significant impact on the levels of fatty acids, specifically miristic (C14:0), margaric (C17:0), and stearic (C18:0), which increased as the storage period and temperature increased. Conversely, the percentage of oleic acid decreased under these conditions. This trend was observed across different storage temperatures (0, 8, and 25°C) in untreated coffee beans affected by fungal activity.
Collapse
Affiliation(s)
- Amira H. Alabdalall
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Basic and Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
2
|
Janne Carvalho Ferreira L, de Souza Gomes M, Maciel de Oliveira L, Diniz Santos L. Coffee fermentation process: A review. Food Res Int 2023; 169:112793. [PMID: 37254380 DOI: 10.1016/j.foodres.2023.112793] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 03/26/2023] [Accepted: 04/02/2023] [Indexed: 06/01/2023]
Abstract
In recent years, the importance of controlling coffee fermentation in the final quality of the beverage has been recognized. The literature review was conducted in the Science Direct and Springer databases, considering studies published in the last ten years, 74 references were selected. Several studies have been developed to evaluate and propose fermentation conditions that result in sensory improvements in coffee. So, this review aims to describe detailed the different protocols for conducting the coffee fermentation step and how they could influence the sensory quality of coffee based on the Specialty Coffee Association protocol. We propose a new way to identify coffee post-harvest processing not based on the already known wet, dry and semi-dry processing. The new identification is focused on considering fermentation as a step influenced by the coffee fruit treatment, availability of oxygen, water addition, and starter culture utilization. The findings of this survey showed that each type of coffee fermentation protocol can influence the microbiota development and consequently the coffee beverage. There is a migration from the use of processes in open environments to closed environments with controlled anaerobic conditions. However, it is not possible yet to define a single process capable of increasing coffee quality or developing a specific sensory pattern in any environmental condition. The use of starter cultures plays an important role in the sensory differentiation of coffee and can be influenced by the fermentation protocol applied. The application of fermentation protocols well defined is essential in order to have a good product also in terms of food safety. More research is needed to develop and implement environmental control conditions, such as temperature and aeration, to guarantee the reproducibility of the results.
Collapse
Affiliation(s)
| | - Matheus de Souza Gomes
- Laboratory of Bioinformatics and Molecular Analysis (LBAM), Federal University of Uberlândia, Patos de Minas, Minas Gerais, Brazil.
| | - Liliane Maciel de Oliveira
- Department of Food Engineering, Federal University of São João del-Rei, Sete Lagoas, Minas Gerais, Brazil.
| | - Líbia Diniz Santos
- Faculty of Chemical Engineering, Federal University of Uberlândia, Patos de Minas, Minas Gerais, Brazil.
| |
Collapse
|
3
|
Lipidomic profiling of Indonesian coffee to determine its geographical origin by LC–MS/MS. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04098-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
4
|
Galarza G, Figueroa JG. Volatile Compound Characterization of Coffee ( Coffea arabica) Processed at Different Fermentation Times Using SPME-GC-MS. Molecules 2022; 27:molecules27062004. [PMID: 35335365 PMCID: PMC8954866 DOI: 10.3390/molecules27062004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/05/2022] [Accepted: 03/12/2022] [Indexed: 11/18/2022] Open
Abstract
Coffee is a beverage that is consumed due to its flavor and fragrance. In this investigation, we demonstrated the relations between different dry fermentation processes of coffee (aerobic, anaerobic, and atmosphere modified with CO2) and fermentation times (0, 24, 48, 72, and 96 h), with pH, acidity, and seven volatile marker compounds of coffee. Volatile compounds were extracted by solid phase microextraction (SPME) and an analysis was performed by gas chromatography−mass spectrometry (GC−MS). A significant effect (p < 0.05) between the fermentation time and a decrease in pH was demonstrated, as well as between the fermentation time and increasing acidity (p < 0.05). Acetic acid was positively correlated with the fermentation time, unlike 2-methylpyrazine, 2-furanmethanol, 2,6-dimethylpyrazine, and 5-methylfurfural, which were negatively correlated with the fermentation time. The aerobic and anaerobic fermentation treatments obtained high affinity with the seven volatile marker compounds analyzed due to the optimal environment for the development of the microorganisms that acted in this process. In contrast, in the fermentation process in an atmosphere modified with CO2, a negative affinity with the seven volatile compounds was evidenced, because this gas inactivated the development of microorganisms and inhibited their activity in the fermentation process.
Collapse
|
5
|
Ota C, Hondo T, Miyake Y, Furutani H, Toyoda M. Rapid Analysis of α-Tocopherol and Its Oxidation Products Using Supercritical Carbon Dioxide and Proton Transfer Reaction Ionization Mass Spectrometry. Mass Spectrom (Tokyo) 2022; 11:A0108. [PMID: 36713809 PMCID: PMC9853115 DOI: 10.5702/massspectrometry.a0108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
We have developed a rapid and sensitive analytical method for α-tocopherol and its oxidative products by combining online hyphenation of supercritical fluid extraction-supercritical fluid chromatography (SFC) with proton transfer reaction (PTR) ionization mass spectrometry (MS). α-Tocopherol is a well-known antioxidant that plays a vital role in the antioxidant defense system in plant cells. However, studies on the cellular mechanisms of α-tocopherol have been limited owing to the lack of a rapid analytical method, which limits the comparison of plant cells incubated in various conditions. Additionally, complex sample preparation and long chromatography separation times are required. Moreover, the majority of the involved molecules are a combination of isomers, which must be separated before applying tandem MS. α-Tocopherol produces the α-tocopheroxyl radical in the first step of its antioxidant function; another ion with the same mass may also be generated from the source. SFC separation effectively distinguished the observed ions from their oxidative products in the sample and those produced during the ionization reaction process. This method enabled the measurement of α-tocopherol and its oxidative products such as α-tocopheroxyl radical and α-tocopheryl quinone in approximately 3 min per sample, including the time required for sample preparation.
Collapse
Affiliation(s)
- Chihiro Ota
- Graduate School of Science and Engineering, Kansai University, 3–3–35 Yamate-cho, Suita, Osaka 564–8680, Japan,Forefront Research Center, Graduate School of Science, Osaka University, 1–1 Machikaneyama, Toyonaka, Osaka 560–0043, Japan
| | - Toshinobu Hondo
- Forefront Research Center, Graduate School of Science, Osaka University, 1–1 Machikaneyama, Toyonaka, Osaka 560–0043, Japan,MS-Cheminformatics LLC, Sasao-nishi 2–13–21, Toin, Inabe, Mie 511–0231, Japan
| | - Yumi Miyake
- Forefront Research Center, Graduate School of Science, Osaka University, 1–1 Machikaneyama, Toyonaka, Osaka 560–0043, Japan
| | - Hiroshi Furutani
- Forefront Research Center, Graduate School of Science, Osaka University, 1–1 Machikaneyama, Toyonaka, Osaka 560–0043, Japan,Center for Scientific Instrument Renovation and Manufacturing Support, Osaka University, 1–2 Machikaneyama, Toyonaka, Osaka 560–0043, Japan
| | - Michisato Toyoda
- Forefront Research Center, Graduate School of Science, Osaka University, 1–1 Machikaneyama, Toyonaka, Osaka 560–0043, Japan,Correspondence to: Michisato Toyoda, Forefront Research Center, Graduate School of Science, Osaka University, 1–1 Machikaneyama, Toyonaka, Osaka 560–0043, Japan, e-mail:
| |
Collapse
|
6
|
Insights on Single-Dose Espresso Coffee Capsules' Volatile Profile: From Ground Powder Volatiles to Prediction of Espresso Brew Aroma Properties. Foods 2021; 10:foods10102508. [PMID: 34681557 PMCID: PMC8535219 DOI: 10.3390/foods10102508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/17/2022] Open
Abstract
Single-dose coffee capsules have revolutionized the coffee market, fueling espresso coffee popularity and offering access to a wide selection of coffee blends. Nevertheless, scarce information related to coffee powder and brew’s combined volatile characterization is available. In this study, it is hypothesized that coffee brew aroma characteristics can be predicted based on coffee powder’s volatile composition. For this, headspace solid-phase microextraction (HS-SPME) combined with comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry detection (GC × GC-ToFMS) was used. The data were combined via chemometric tools to characterize in depth the volatile composition of eight blends of capsule-coffee powder and respective espresso brews, simulating the consumer’s perception. A total of 390 volatile compounds were putatively identified, 100 reported for the first time in roasted coffee or brews. Although the same chemical families were determined among the coffee powders and espresso brews, a different volatile profile was determined for each matrix. The Pearson correlation of coffee powders and respective brews allowed to identify 15 volatile compounds, mainly terpenic and esters recognized by their pleasant notes, with a strong relationship between the amounts present in both matrices. These compounds can be key markers to predict the volatile aroma potential of an espresso brew when analyzing the coffee powder.
Collapse
|
7
|
Bressani APP, Martinez SJ, Batista NN, Simão JBP, Dias DR, Schwan RF. Co-inoculation of yeasts starters: A strategy to improve quality of low altitude Arabica coffee. Food Chem 2021; 361:130133. [PMID: 34082390 DOI: 10.1016/j.foodchem.2021.130133] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/04/2021] [Accepted: 05/13/2021] [Indexed: 11/19/2022]
Abstract
The study aimed to improve the quality of dry-processed coffee grown at low altitudes through yeast inoculation, using three species (Saccharomyces cerevisiae CCMA 0543, Torulaspora delbrueckii CCMA 0684, and Candida parapsilosis CCMA 0544) singly and with co-inoculation for fermentation. Important chemical compounds and groups were analyzed by liquid and gas chromatography and Fourier-transform infrared spectroscopy (FTIR). The inoculated coffees with yeast populations around 106 cell/g obtained the highest scores, and the co-inoculation with C. parapsilosis CCMA 0544 and T. delbrueckii CCMA 0684 had the highest score in the sensory analysis (85). Different descriptors were observed in each treatment, and body, flavor, balance, and aftertaste are strongly related to C. parapsilosis CCMA 0544. The fermentation process improved the quality of low-altitude coffees, and the combination of non-Saccharomyces yeasts (C. parapsilosis CCMA 0544 and T. delbrueckii CCMA 0684) was the most indicated as starter cultures.
Collapse
Affiliation(s)
| | | | - Nádia Nara Batista
- Biology Department, Federal University of Lavras, CEP 37200-900, Lavras, MG, Brazil.
| | - João Batista Pavesi Simão
- Technology and Coffee Growing Course, Federal Institute of Espírito Santo- IFES, CEP 29520-000, Alegre, ES, Brazil.
| | - Disney Ribeiro Dias
- Food Science Department, Federal University of Lavras, CEP 37200-900, Lavras, MG, Brazil.
| | - Rosane Freitas Schwan
- Biology Department, Federal University of Lavras, CEP 37200-900, Lavras, MG, Brazil.
| |
Collapse
|
8
|
Bressani APP, Martinez SJ, Sarmento ABI, Borém FM, Schwan RF. Influence of yeast inoculation on the quality of fermented coffee (Coffea arabica var. Mundo Novo) processed by natural and pulped natural processes. Int J Food Microbiol 2021; 343:109107. [PMID: 33662694 DOI: 10.1016/j.ijfoodmicro.2021.109107] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 01/07/2021] [Accepted: 02/10/2021] [Indexed: 01/26/2023]
Abstract
Starter cultures during fermentation of Coffea arabica var. Mundo Novo processed in open stainless-steel vessels by natural and pulped natural methods were studied. The yeasts Meyerozyma caribbica (CCMA 0198), Saccharomyces cerevisiae (CCMA 0543), Candida parapsilosis (CCMA 0544), and Torulaspora delbrueckii (CCMA 0684) were inoculated separately in two different coffee processes: natural and pulped natural. The qPCR (real-time quantitative polymerase chain reaction) was used as a culture-independent method to monitor the inoculum's permanence. Changes in microbial metabolites (organic acids and volatile) production were evaluated by high-performance liquid chromatography (HPLC) and gas chromatograph-mass spectrometry (GC-MS), respectively. The sensory analysis was assessed in roasted beans. The fermentation lasted 27 h, and the coffee temperature ranged from 16.5 to 24.0 °C. The starter culture population was dominant throughout fermentation. S. cerevisiae (CCMA 0543) and T. delbrueckii (CCMA 0684) presented a higher population in natural processing. However, in pulped natural processing, M. caribbica (CCMA 0198) and C. parapsilosis (CCMA 0544) were the dominant populations. Citric, malic, and succinic acids were naturally present in coffee. Lactic, isobutyric, and isovaleric acids were detected at the end of the fermentation in different treatments. Lactic acid was detected in samples at the end of fermentation in Control and CCMA 0198 treatment. NAT coffee inoculated with CCMA 0684 presented isobutyric acid and isovaleric acid concentrations. Volatile compounds, such as 2,6-diethylpyrazine was detected in treatments inoculated with yeasts, but not in Controls. 2-acetoxymethylfuran was only detected in samples inoculated with CCMA 0198 from both NAT and PN methods. Samples fermented with S. cerevisiae (CCMA 0543) presented the highest sensorial scores in both processing (84.75 and 84.92). The inoculated coffee beans showed higher scores of sweetness, long aftertaste, and greater complexity. The starter cultures influenced the sensorial profiles through the synthesis of specific volatile constituents. However, considering all parameters analyzed, S. cerevisiae (CCMA 0543) would be the most suitable yeast for the var. Mundo Novo processed by both fermentation methods.
Collapse
Affiliation(s)
| | | | | | - Flávio Meira Borém
- Engineering Department, Federal University of Lavras, CEP 37200-000 Lavras, MG, Brazil
| | | |
Collapse
|
9
|
|
10
|
Effect of altitude of coffee plants on the composition of fatty acids of green coffee beans. BMC Chem 2020; 14:36. [PMID: 32426756 PMCID: PMC7218600 DOI: 10.1186/s13065-020-00688-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 05/05/2020] [Indexed: 11/23/2022] Open
Abstract
Background The fatty acids of green coffee beans are one of the major components that determine the quality of coffee. Fatty acids composition of green coffee beans is affected by soil composition and altitude of coffee plants. This study was aimed to evaluate the effect of altitude of the coffee plants on the composition of fatty acids in green coffee beans. Methods Fatty acids contents of 40 green coffee beans samples collected from the coffee plants grown at different altitudes (group 1: 1500–1700, group 2: 1701–1900 and group 3: > 1900 m.a.s.l.) in Ethiopia were determined using gas chromatography-mass spectrometry (GC–MS). Chemometric data analyses were performed to determine the effects of altitude on the fatty acid composition of the green coffee beans. Results The green coffee beans contained main saturated fatty acid, palmitic acid with an average value of 55.5 mg/g and unsaturated fatty acid, linoleic acid with an average value of 51.6 mg/g. The other major constituents of fatty acids present in green coffee beans were stearic and oleic acids with the value of 12.3 mg/g and 8.92 mg/g, respectively. Palmitic acid content in lowland green coffee beans is significantly different than in the other two regions. On the other hand, stearic and oleic acids contents in the green coffee beans did not show a significant difference between the three topographical regions. While linoleic acid content in the green coffee beans showed significant difference between group 1 and 3 but did not show significant differences between group 1 and 2 and between group 2 and 3. The four major fatty acids, palmitic (R = − 0.574), linoleic (R = − 0.506), stearic (R = − 0.43) and oleic acids (R = − 0.291) in green coffee beans showed a moderate negative correlation with the altitude of coffee plants. Conclusion The fatty acids contents decreases with increasing altitude of the coffee plants and hence affects the quality of coffee. The fatty acid composition of green coffee beans can also be used to determine the topographical origin of coffee plants.
Collapse
|