1
|
Brito-Bazán E, Ascanio G, Iñiguez-Moreno M, Calderón-Santoyo M, Córdova-Aguilar MS, Brito-de la Fuente E, Ragazzo-Sánchez JA. High-pressure pulses for Aspergillus niger spore inactivation in a model pharmaceutical lipid emulsion. Int J Food Microbiol 2023; 399:110255. [PMID: 37210954 DOI: 10.1016/j.ijfoodmicro.2023.110255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/09/2023] [Accepted: 05/12/2023] [Indexed: 05/23/2023]
Abstract
High hydrostatic pressure (HHP) is a non-thermal process widely used in the food industry to reduce microbial populations. However, rarely its effect has been assessed in products with high oil content. This study evaluated the efficacy of HHP (200, 250, and 300 MPa) at different temperatures (25, 35, and 45 °C) by cycles (1, 2, or 3) of 10 min in the inactivation of Aspergillus niger spores in a lipid emulsion. After treatments at 300 MPa for 1 cycle at 35 or 45 °C, no surviving spores were recovered. All treatments were modeled by the linear and Weibull models. The presence of shoulders and tails in the treatments at 300 MPa at 35 or 45 °C resulted in sigmoidal curves which cannot be described by the linear model, hence the Weibull + Tail, Shoulder + Log-lin + Tail, and double Weibull models were evaluated to elucidate the inactivation kinetics. The tailing formation could be related to the presence of resistance subpopulations. The double Weibull model showed better goodness of fit (RMSE <0.2) to describe the inactivation kinetics of the treatments with the higher spore reductions. HHP at 200-300 MPa and 25 °C did not reduce the Aspergillus niger spores. The combined HHP and mild temperatures (35-45 °C) favored fungal spore inactivation. Spore inactivation in lipid emulsions by HHP did not follow a linear inactivation. HHP at mild temperatures is an alternative to the thermal process in lipid emulsions.
Collapse
Affiliation(s)
- Estefanía Brito-Bazán
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Ciudad Universitaria, México City C.P. 04510, Mexico
| | - Gabriel Ascanio
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Ciudad Universitaria, México City C.P. 04510, Mexico
| | - Maricarmen Iñiguez-Moreno
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Ciudad Universitaria, México City C.P. 04510, Mexico; Laboratorio Integral de Investigación en Alimentos, Instituto Tecnológico de Tepic/Tecnológico Nacional de México, Av. Tecnológico # 2595, Lagos del Country, Tepic, Nayarit C.P. 63175, Mexico
| | - Montserrat Calderón-Santoyo
- Laboratorio Integral de Investigación en Alimentos, Instituto Tecnológico de Tepic/Tecnológico Nacional de México, Av. Tecnológico # 2595, Lagos del Country, Tepic, Nayarit C.P. 63175, Mexico
| | - Maria Soledad Córdova-Aguilar
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Ciudad Universitaria, México City C.P. 04510, Mexico
| | | | - Juan Arturo Ragazzo-Sánchez
- Laboratorio Integral de Investigación en Alimentos, Instituto Tecnológico de Tepic/Tecnológico Nacional de México, Av. Tecnológico # 2595, Lagos del Country, Tepic, Nayarit C.P. 63175, Mexico.
| |
Collapse
|
2
|
Aganovic K, Hertel C, Vogel RF, Johne R, Schlüter O, Schwarzenbolz U, Jäger H, Holzhauser T, Bergmair J, Roth A, Sevenich R, Bandick N, Kulling SE, Knorr D, Engel KH, Heinz V. Aspects of high hydrostatic pressure food processing: Perspectives on technology and food safety. Compr Rev Food Sci Food Saf 2021; 20:3225-3266. [PMID: 34056857 DOI: 10.1111/1541-4337.12763] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 04/02/2021] [Accepted: 04/10/2021] [Indexed: 11/29/2022]
Abstract
The last two decades saw a steady increase of high hydrostatic pressure (HHP) used for treatment of foods. Although the science of biomaterials exposed to high pressure started more than a century ago, there still seem to be a number of unanswered questions regarding safety of foods processed using HHP. This review gives an overview on historical development and fundamental aspects of HHP, as well as on potential risks associated with HHP food applications based on available literature. Beside the combination of pressure and temperature, as major factors impacting inactivation of vegetative bacterial cells, bacterial endospores, viruses, and parasites, factors, such as food matrix, water content, presence of dissolved substances, and pH value, also have significant influence on their inactivation by pressure. As a result, pressure treatment of foods should be considered for specific food groups and in accordance with their specific chemical and physical properties. The pressure necessary for inactivation of viruses is in many instances slightly lower than that for vegetative bacterial cells; however, data for food relevant human virus types are missing due to the lack of methods for determining their infectivity. Parasites can be inactivated by comparatively lower pressure than vegetative bacterial cells. The degrees to which chemical reactions progress under pressure treatments are different to those of conventional thermal processes, for example, HHP leads to lower amounts of acrylamide and furan. Additionally, the formation of new unknown or unexpected substances has not yet been observed. To date, no safety-relevant chemical changes have been described for foods treated by HHP. Based on existing sensitization to non-HHP-treated food, the allergenic potential of HHP-treated food is more likely to be equivalent to untreated food. Initial findings on changes in packaging materials under HHP have not yet been adequately supported by scientific data.
Collapse
Affiliation(s)
- Kemal Aganovic
- DIL German Institute of Food Technologies e.V., Quakenbrück, Germany
| | - Christian Hertel
- DIL German Institute of Food Technologies e.V., Quakenbrück, Germany
| | - Rudi F Vogel
- Technical University of Munich (TUM), Munich, Germany
| | - Reimar Johne
- German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Oliver Schlüter
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany.,Alma Mater Studiorum, University of Bologna, Cesena, Italy
| | | | - Henry Jäger
- University of Natural Resources and Life Sciences (BOKU), Wien, Austria
| | - Thomas Holzhauser
- Division of Allergology, Paul-Ehrlich-Institut (PEI), Langen, Germany
| | | | - Angelika Roth
- Senate Commission on Food Safety (DFG), IfADo, Dortmund, Germany
| | - Robert Sevenich
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany.,Technical University of Berlin (TUB), Berlin, Germany
| | - Niels Bandick
- German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | | | | | | | - Volker Heinz
- DIL German Institute of Food Technologies e.V., Quakenbrück, Germany
| |
Collapse
|