1
|
Gado WS, Al-Gamal AG, Badawy MSEM, Labena A, Zakaria K, Kabel KI. Detectable quorum signaling molecule via PANI-metal oxides nanocomposites sensors. Sci Rep 2024; 14:10041. [PMID: 38693218 PMCID: PMC11063039 DOI: 10.1038/s41598-024-60093-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 04/18/2024] [Indexed: 05/03/2024] Open
Abstract
The detection of N-hexanoyl-l-homoserine lactone (C6-HSL), a crucial signal in Gram-negative bacterial communication, is essential for addressing microbiologically influenced corrosion (MIC) induced by sulfate-reducing bacteria (SRB) in oil and gas industries. Metal oxides (MOx) intercalated into conducting polymers (CPs) offer a promising sensing approach due to their effective detection of biological molecules such as C6-HSL. In this study, we synthesized and characterized two MOx/polyaniline-dodecyl benzene sulfonic acid (PANI-DBSA) nanocomposites, namely ZnO/PANI-DBSA and Fe2O3/PANI-DBSA. These nanocomposites were applied with 1% by-weight carbon paste over a carbon working electrode (WE) for qualitative and quantitative detection of C6-HSL through electrochemical analysis. The electrochemical impedance spectroscopy (EIS) confirmed the composites' capability to monitor C6-HSL produced by SRB-biofilm, with detection limits of 624 ppm for ZnO/PANI-DBSA and 441 ppm for Fe2O3/PANI-DBSA. Furthermore, calorimetric measurements validated the presence of SRB-biofilm, supporting the EIS analysis. The utilization of these MOx/CP nanocomposites offers a practical approach for detecting C6-HSL and monitoring SRB-biofilm formation, aiding in MIC management in oil and gas wells. The ZnO/PANI-DBSA-based sensor exhibited higher sensitivity towards C6-HSL compared to Fe2O3/PANI-DBSA, indicating its potential for enhanced detection capabilities in this context. Stability tests revealed ZnO/PANI-DBSA's superior stability over Fe2O3/PANI-DBSA, with both sensors retaining approximately 85-90% of their initial current after 1 month, demonstrating remarkable reproducibility and durability.
Collapse
Affiliation(s)
- Walaa S Gado
- Egyptian Petroleum Research Institute (EPRI), 11727, Nasr City, Cairo, Egypt.
| | | | - Mona Shaban E M Badawy
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - A Labena
- Egyptian Petroleum Research Institute (EPRI), 11727, Nasr City, Cairo, Egypt
| | - Khaled Zakaria
- Egyptian Petroleum Research Institute (EPRI), 11727, Nasr City, Cairo, Egypt
| | - Khalid I Kabel
- Egyptian Petroleum Research Institute (EPRI), 11727, Nasr City, Cairo, Egypt
| |
Collapse
|
2
|
Malachy Udowo V, Unimuke TO, Louis H, Udoh II, Edet HO, Okafor PC. Enhanced sensing of bacteria biomarkers by ZnO and graphene oxide decorated PEDOT film. J Biomol Struct Dyn 2024:1-14. [PMID: 38499994 DOI: 10.1080/07391102.2024.2328740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 03/05/2024] [Indexed: 03/20/2024]
Abstract
Developing a biofilm biomarker detector and inhibitor will immensely benefit efforts geared at curbing infectious diseases and microbiologically induced corrosion of medical implants, marine vessels and buried steel pipelines. N-Acyl homoserine lactones (AHLs) are important biomarkers gram-negative bacteria use for communication. In this work, we investigated the interactions between three AHL molecules and graphene oxide (GO) and ZnO nanomaterials embedded in conjugated poly(3,4-ethylenedioxythiophene) (PEDOT) film. The results show that PEDOT/GO/ZnO detected AHLs to a considerable extent with adsorption enthalpies of -4.02, -4.87 and -4.97 KJ/mol, respectively, for N-(2-oxotetrahydrofuran-3-yl)heptanamide (AHL1), 2-hydroxy-N-(2-oxotetrahydrofuran-3-yl)nonanamide (AHL2) and (E)-3-(3-hydroxyphenyl)-N-(2-oxotetrahydrofuran-3-yl)acrylamide (AHL3) molecules. The ZnO nanoparticles facilitated charge redistribution and transfer, thereby enhancing the conductivity and overall sensitivity of the substrate toward the AHLs. The adsorption distance and sites of interactions further tuned the charge migration and signal generation by the substrate, thus affirming the suitability of the modeled thin film as a sensor material. Excellent stability and conductivity were maintained before and after the adsorption of each AHL molecule. Moreover, the desorption time for each AHL molecule was calculated, and the result affirmed that the modeled film materials are promising for developing highly sensitive biosensors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Victor Malachy Udowo
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Tomsmith O Unimuke
- Department of Pure and Applied Chemistry, University of Calabar, Calabar, Nigeria
| | - Hitler Louis
- Department of Pure and Applied Chemistry, University of Calabar, Calabar, Nigeria
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy or Research and Education, Kelambakkam, Tamil Nadu, India
| | - Inime Ime Udoh
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Henry O Edet
- Department of Pure and Applied Chemistry, University of Calabar, Calabar, Nigeria
| | - Peter C Okafor
- Department of Pure and Applied Chemistry, University of Calabar, Calabar, Nigeria
| |
Collapse
|
3
|
Optical and Electrochemical Techniques for Point-of-Care Water Quality Monitoring: A review. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
4
|
Label-Free Electrochemical Aptasensor for the Detection of the 3-O-C12-HSL Quorum-Sensing Molecule in Pseudomonas aeruginosa. BIOSENSORS 2022; 12:bios12070440. [PMID: 35884243 PMCID: PMC9312901 DOI: 10.3390/bios12070440] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 01/01/2023]
Abstract
Pseudomonas aeruginosa, an opportunistic Gram-negative bacterium, is one of the main sources of infections in healthcare environments, making its detection very important. N-3-oxo-dodecanoyl L-homoserine lactone (3-O-C12-HSL) is a characteristic molecule of quorum sensing—a form of cell-to-cell communication between bacteria—in P. aeruginosa. Its detection can allow the determination of the bacterial population. In this study, the development of the first electrochemical aptasensor for the detection of 3-O-C12-HSL is reported. A carbon-based screen-printed electrode modified with gold nanoparticles proved to be the best platform for the aptasensor. Each step in the fabrication of the aptasensor (i.e., gold nanoparticles’ deposition, aptamer immobilization, incubation with the analyte) was optimized and characterized using cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy. Different redox probes in solution were evaluated, the best results being obtained in the presence of [Fe(CN)6]4−/[Fe(CN)6]3−. The binding affinity of 106.7 nM for the immobilized thiol-terminated aptamer was determined using surface plasmon resonance. The quantification of 3-O-C12-HSL was performed by using the electrochemical signal of the redox probe before and after incubation with the analyte. The aptasensor exhibited a logarithmic range from 0.5 to 30 µM, with a limit of detection of 145 ng mL−1 (0.5 µM). The aptasensor was successfully applied for the analysis of real samples (e.g., spiked urine samples, spiked microbiological growth media, and microbiological cultures).
Collapse
|
5
|
Péter B, Farkas E, Kurunczi S, Szittner Z, Bősze S, Ramsden JJ, Szekacs I, Horvath R. Review of Label-Free Monitoring of Bacteria: From Challenging Practical Applications to Basic Research Perspectives. BIOSENSORS 2022; 12:bios12040188. [PMID: 35448248 PMCID: PMC9026780 DOI: 10.3390/bios12040188] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 05/10/2023]
Abstract
Novel biosensors already provide a fast way to detect the adhesion of whole bacteria (or parts of them), biofilm formation, and the effect of antibiotics. Moreover, the detection sensitivities of recent sensor technologies are large enough to investigate molecular-scale biological processes. Usually, these measurements can be performed in real time without using labeling. Despite these excellent capabilities summarized in the present work, the application of novel, label-free sensor technologies in basic biological research is still rare; the literature is dominated by heuristic work, mostly monitoring the presence and amount of a given analyte. The aims of this review are (i) to give an overview of the present status of label-free biosensors in bacteria monitoring, and (ii) to summarize potential novel directions with biological relevancies to initiate future development. Optical, mechanical, and electrical sensing technologies are all discussed with their detailed capabilities in bacteria monitoring. In order to review potential future applications of the outlined techniques in bacteria research, we summarize the most important kinetic processes relevant to the adhesion and survival of bacterial cells. These processes are potential targets of kinetic investigations employing modern label-free technologies in order to reveal new fundamental aspects. Resistance to antibacterials and to other antimicrobial agents, the most important biological mechanisms in bacterial adhesion and strategies to control adhesion, as well as bacteria-mammalian host cell interactions are all discussed with key relevancies to the future development and applications of biosensors.
Collapse
Affiliation(s)
- Beatrix Péter
- Nanobiosensorics Laboratory, Centre for Energy Research, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (S.K.); (Z.S.); (I.S.)
- Correspondence: (B.P.); (R.H.)
| | - Eniko Farkas
- Nanobiosensorics Laboratory, Centre for Energy Research, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (S.K.); (Z.S.); (I.S.)
| | - Sandor Kurunczi
- Nanobiosensorics Laboratory, Centre for Energy Research, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (S.K.); (Z.S.); (I.S.)
| | - Zoltán Szittner
- Nanobiosensorics Laboratory, Centre for Energy Research, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (S.K.); (Z.S.); (I.S.)
| | - Szilvia Bősze
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), Institute of Chemistry, Eötvös Loránd University, 1120 Budapest, Hungary;
- National Public Health Center, 1097 Budapest, Hungary
| | - Jeremy J. Ramsden
- Clore Laboratory, Department of Biomedical Research, University of Buckingham, Buckingham MK18 1AD, UK;
| | - Inna Szekacs
- Nanobiosensorics Laboratory, Centre for Energy Research, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (S.K.); (Z.S.); (I.S.)
| | - Robert Horvath
- Nanobiosensorics Laboratory, Centre for Energy Research, Institute of Technical Physics and Materials Science, 1121 Budapest, Hungary; (E.F.); (S.K.); (Z.S.); (I.S.)
- Correspondence: (B.P.); (R.H.)
| |
Collapse
|
6
|
Li Y, Hu Y, Chen T, Chen Y, Li Y, Zhou H, Yang D. Advanced detection and sensing strategies of Pseudomonas aeruginosa and quorum sensing biomarkers: A review. Talanta 2022; 240:123210. [PMID: 35026633 DOI: 10.1016/j.talanta.2022.123210] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 11/25/2022]
Abstract
Pseudomonas aeruginosa (P. aeruginosa), a ubiquitous opportunistic pathogen, can frequently cause chronic obstructive pulmonary disease, cystic fibrosis and chronic wounds, and potentially lead to severe morbidity and mortality. Timely and adequate treatment of nosocomial infection in clinic depends on rapid detection and accurate identification of P. aeruginosa and its early-stage antibiotic susceptibility test. Traditional methods like plating culture, polymerase chain reaction, and enzyme-linked immune sorbent assays are time-consuming and require expensive equipment, limiting the rapid diagnostic application. Advanced sensing strategy capable of fast, sensitive and simple detection with low cost has therefore become highly desired in point of care testing (POCT) of nosocomial pathogens. Within this review, advanced detection and sensing strategies for P. aeruginosa cells along with associated quorum sensing (QS) molecules over the last ten years are discussed and summarized. Firstly, the principles of four commonly used sensing strategies including localized surface plasmon resonance (LSPR), surface-enhanced Raman spectroscopy (SERS), electrochemistry, and fluorescence are briefly overviewed. Then, the advancement of the above sensing techniques for P. aeruginosa cells and its QS biomarkers detection are introduced, respectively. In addition, the integration with novel compatible platforms towards clinical application is highlighted in each section. Finally, the current achievements are summarized along with proposed challenges and prospects.
Collapse
Affiliation(s)
- Yingying Li
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang Province, 315211, People's Republic of China; Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Yang Hu
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Tao Chen
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Yan Chen
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Yi Li
- Graduate School of Biomedical Engineering and ARC Centre of Excellence in Nanoscale Biophotonics, University of New South Wales, Sydney, 2052, Australia
| | - Haibo Zhou
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Danting Yang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang Province, 315211, People's Republic of China; Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China.
| |
Collapse
|
7
|
Nesakumar N, Lakshmanakumar M, Srinivasan S, Jayalatha JBB A, Balaguru Rayappan JB. Principles and Recent Advances in Biosensors for Pathogens Detection. ChemistrySelect 2021. [DOI: 10.1002/slct.202101062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Noel Nesakumar
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB) SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
- School of Chemical and Biotechnology SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
| | - Muthaiyan Lakshmanakumar
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB) SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
- School of Electrical & Electronics Engineering SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
| | - Soorya Srinivasan
- School of Electrical & Electronics Engineering SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
| | - Arockia Jayalatha JBB
- School of Electrical & Electronics Engineering SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
| | - John Bosco Balaguru Rayappan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB) SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
- School of Electrical & Electronics Engineering SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
| |
Collapse
|
8
|
Abstract
An increasing number of foodborne outbreaks, growing consumer desire for healthier products, and surging numbers of food allergy cases necessitate strict handling and screening of foods at every step of the food supply chain. Current standard procedures for detecting food toxins, contaminants, allergens, and pathogens require costly analytical devices, skilled technicians, and long sample preparation times. These challenges can be overcome with the use of biosensors because they provide accurate, rapid, selective, qualitative, and quantitative detection of analytes. Their ease of use, low-cost production, portability, and nondestructive measurement techniques also enable on-site detection of analytes. For this reason, biosensors find many applications in food safety and quality assessments. The detection mechanisms of biosensors can be varied with the use of different transducers, such as optical, electrochemical, or mechanical. These options provide a more appropriate selection of the biosensors for the intended use. In this review, recent studies focusing on the fabrication of biosensors for food safety or food quality purposes are summarized. To differentiate the detection mechanisms, the review is divided into sections based on the transducer type used.
Collapse
Affiliation(s)
- Hazal Turasan
- Department of Food Science, Purdue University, West Lafayette, Indiana 47907, USA; ,
| | - Jozef Kokini
- Department of Food Science, Purdue University, West Lafayette, Indiana 47907, USA; ,
| |
Collapse
|
9
|
|
10
|
Affiliation(s)
- Mohamed Sharafeldin
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| | - Jason J. Davis
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| |
Collapse
|
11
|
Campbell VR, Carson MS, Lao A, Maran K, Yang EJ, Kamei DT. Point-of-Need Diagnostics for Foodborne Pathogen Screening. SLAS Technol 2020; 26:55-79. [PMID: 33012245 DOI: 10.1177/2472630320962003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Foodborne illness is a major public health issue that results in millions of global infections annually. The burden of such illness sits mostly with developing countries, as access to advanced laboratory equipment and skilled lab technicians, as well as consistent power sources, is limited and expensive. Current gold standards in foodborne pathogen screening involve labor-intensive sample enrichment steps, pathogen isolation and purification, and costly readout machinery. Overall, time to detection can take multiple days, excluding the time it takes to ship samples to off-site laboratories. Efforts have been made to simplify the workflow of such tests by integrating multiple steps of foodborne pathogen screening procedures into a singular device, as well as implementing more point-of-need readout methods. In this review, we explore recent advancements in developing point-of-need devices for foodborne pathogen screening. We discuss the detection of surface markers, nucleic acids, and metabolic products using both paper-based and microfluidic devices, focusing primarily on developments that have been made between 2015 and mid-2020.
Collapse
Affiliation(s)
- Veronica R Campbell
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, USA
| | - Mariam S Carson
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, USA
| | - Amelia Lao
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, USA
| | - Kajal Maran
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, USA
| | - Eric J Yang
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, USA
| | - Daniel T Kamei
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, USA
| |
Collapse
|