1
|
Klimczak K, Cioch-Skoneczny M, Ciosek A, Poreda A. Application of Non- Saccharomyces Yeast for the Production of Low-Alcohol Beer. Foods 2024; 13:3214. [PMID: 39456276 PMCID: PMC11507149 DOI: 10.3390/foods13203214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
In recent years, demand for low-alcohol and alcohol-free beers has been rising. Of the many methods of producing such beers, many have expensive implementation requirements or drawbacks in terms of beer quality. The exploration of non-Saccharomyces yeast species presents a promising opportunity to overcome these challenges. These yeasts, with their diverse metabolic capabilities and unique flavor profiles, offer the potential to create innovative and flavorful low-alcohol beers. The study investigates the feasibility of using selected non-Saccharomyces yeasts for brewing low-alcohol beers, focusing on fermentation kinetics, physicochemical parameters, and the sensory attributes of the final product. The evaluated yeast species were Kluyveromyces lactis MG971263, Metschnikowia pulcherrima MG971247 and MG971250, Torulaspora delbrueckii MG971248, Wickerhamomyces anomalus MG971261, and W. onychis MG971246. Two strains of Saccharomyces cerevisiae were used as a control. The results of the study show that selected non-Saccharomyces yeast species might be used to produce low-alcohol beers. The non-Saccharomyces yeast allowed the researchers to obtain beers with an alcohol content in the range of 0.5-1.05%, while the control beer brewed with US-05 had an alcohol content of 3.77%. Among the evaluated strains, the strains M. pulcherrima MG971250 and T. delbrueckii MG971248 were found to be rated better in a sensory evaluation than the brewed and low-alcohol strains of S. cerevisiae.
Collapse
Affiliation(s)
| | - Monika Cioch-Skoneczny
- Department of Fermentation Technology and Microbiology, University of Agriculture in Kraków, ul. Balicka 122, 30-149 Kraków, Poland; (K.K.); (A.C.); (A.P.)
| | | | | |
Collapse
|
2
|
Grieco F, Fiore A, Gerardi C, Tufariello M, Romano G, Baiano A. Optimisation of quality features of new wheat beers fermented through sequential inoculation of non- Saccharomyces and Saccharomyces yeasts. Heliyon 2024; 10:e37598. [PMID: 39309899 PMCID: PMC11416233 DOI: 10.1016/j.heliyon.2024.e37598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
The choice of the starchy ingredients as well as that of the yeasts strongly can represent a useful tool to differentiate the final beers. Our research investigated twelve white beers obtained applying a 2-factor mixed 3-level/4-level experimental design. The first factor was the cereal mixture, with 3 combinations of barley malt (65 %) and unmalted wheat (35 % of common, durum, or emmer). The second factor was the yeast used to carry out the fermentation trials, i.e.: a S. cerevisiae starter strain (WB06); an oenological S. cerevisiae strain (9502); two mixed starters made of an oenological Schizosaccharomyces pombe strain (6956) and, alternatively, one of the two S. cerevisiae strains. Most beer attributes were significantly (p < 0.05) influenced by the two considered factors with the following exceptions: the wheat species did not affect maltotriose, maltose, pH, total and volatile acidity, floral flavour, and sweetness; the yeast did not exert significant effects on foam colour, turbidity, overall olfactory intensity, yeast flavour, and body. The flavour of fruits and aromatic herbs were not influenced by the factors studied. Alcohol content was maximised using the unmalted durum wheat (∼7 %) and S. cerevisiae WB06 (∼6.8 %). The beer antioxidant content was increased by the use of emmer (566 mg/L) and by the application of the mixed inoculum (478-487 mg/L). The beers made with unmalted common wheat and fermented by the S. cerevisiae strains alone obtained the best overall sensory score (3.7). As shown by the Principal Component Analysis, the beers were better classified by the type of unmalted wheat than by the fermenting yeast. A multiple regression analysis was performed by fitting the analytical parameters that highlighted significant differences among the beers to a second-order polynomial model. Data concerning colour, glycerol concentration, FC-TPC, and antioxidant activity were satisfactorily predicted (R2 > 0.8) by the fitted models.
Collapse
Affiliation(s)
- Francesco Grieco
- Institute of Sciences of Food Production - National Research Council (CNR-ISPA), Via Prov.le, Lecce-Monteroni, 73100, Lecce, Italy
| | - Anna Fiore
- Dipartimento di Scienze Agrarie, Alimenti, Risorse Naturali e Ingegneria (DAFNE), University of Foggia, Via Napoli 25, 71122, Foggia, Italy
| | - Carmela Gerardi
- Institute of Sciences of Food Production - National Research Council (CNR-ISPA), Via Prov.le, Lecce-Monteroni, 73100, Lecce, Italy
| | - Maria Tufariello
- Institute of Sciences of Food Production - National Research Council (CNR-ISPA), Via Prov.le, Lecce-Monteroni, 73100, Lecce, Italy
| | - Giuseppe Romano
- Institute of Sciences of Food Production - National Research Council (CNR-ISPA), Via Prov.le, Lecce-Monteroni, 73100, Lecce, Italy
| | - Antonietta Baiano
- Dipartimento di Scienze Agrarie, Alimenti, Risorse Naturali e Ingegneria (DAFNE), University of Foggia, Via Napoli 25, 71122, Foggia, Italy
| |
Collapse
|
3
|
Xiong H, Zhang Y, Wang W, Ye H, Zhang Q. Enhancing the Quality of Low-Alcohol Navel Orange Wine through Simultaneous Co-Fermentation Using Saccharomyces cerevisiae SC-125, Angel Yeast SY, and Lactiplantibacillus plantarum BC114. Molecules 2024; 29:1781. [PMID: 38675601 PMCID: PMC11052192 DOI: 10.3390/molecules29081781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/30/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
To date, there has been limited research on the interactive effects of yeast and lactic acid bacteria (LAB) on the sensory qualities of navel orange wine. In this study, using Jintang navel orange juice as the raw material, multi-microbial fermentation was conducted with Saccharomyces cerevisiae SC-125 and Angel yeast SY, as well as Lactiplantibacillus plantarum BC114. Single yeast and co-fermentation with Lactiplantibacillus plantarum were used as the control groups. The research aimed to investigate the physicochemical parameters of navel orange wine during fermentation. Additionally, headspace solid-phase microextraction gas chromatography-mass spectrometry (HP-SPME-GC-MS) was employed to determine and analyze the types and levels of flavor compounds in the navel orange wines produced through the different fermentation methods. The co-fermentation using the three strains significantly enhanced both the quantity and variety of volatile compounds in the navel orange wine, concomitant with heightened total phenol and flavonoid levels. Furthermore, a notable improvement was observed in the free radical scavenging activity. A sensory evaluation was carried out to analyze the differences among the various navel orange wines, shedding light on the impact of different wine yeasts and co-fermentation with LAB on the quality of navel orange wines.
Collapse
Affiliation(s)
- Hua Xiong
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China; (H.X.); (Y.Z.)
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Xihua University, Chengdu 610039, China
| | - Yingyue Zhang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China; (H.X.); (Y.Z.)
| | - Wanting Wang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China; (H.X.); (Y.Z.)
| | - Hong Ye
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China; (H.X.); (Y.Z.)
| | - Qing Zhang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, China; (H.X.); (Y.Z.)
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, China
- Sichuan Advanced Agricultural & Industrial Institute, China Agricultural University, Chengdu 611430, China
| |
Collapse
|
4
|
Makopa TP, Modikwe G, Vrhovsek U, Lotti C, Sampaio JP, Zhou N. The marula and elephant intoxication myth: assessing the biodiversity of fermenting yeasts associated with marula fruits ( Sclerocarya birrea). FEMS MICROBES 2023; 4:xtad018. [PMID: 37854251 PMCID: PMC10581541 DOI: 10.1093/femsmc/xtad018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/21/2023] [Accepted: 10/05/2023] [Indexed: 10/20/2023] Open
Abstract
The inebriation of wild African elephants from eating the ripened and rotting fruit of the marula tree is a persistent myth in Southern Africa. However, the yeasts responsible for alcoholic fermentation to intoxicate the elephants remain poorly documented. In this study, we considered Botswana, a country with the world's largest population of wild elephants, and where the marula tree is indigenous, abundant and protected, to assess the occurrence and biodiversity of yeasts with a potential to ferment and subsequently inebriate the wild elephants. We collected marula fruits from over a stretch of 800 km in Botswana and isolated 106 yeast strains representing 24 yeast species. Over 93% of these isolates, typically known to ferment simple sugars and produce ethanol comprising of high ethanol producers belonging to Saccharomyces, Brettanomyces, and Pichia, and intermediate ethanol producers Wickerhamomyces, Zygotorulaspora, Candida, Hanseniaspora, and Kluyveromyces. Fermentation of marula juice revealed convincing fermentative and aromatic bouquet credentials to suggest the potential to influence foraging behaviour and inebriate elephants in nature. There is insufficient evidence to refute the aforementioned myth. This work serves as the first work towards understanding the biodiversity marula associated yeasts to debunk the myth or approve the facts.
Collapse
Affiliation(s)
- Tawanda Proceed Makopa
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Plot 10071, Boseja, Palapye, Botswana, 00267
| | - Gorata Modikwe
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Plot 10071, Boseja, Palapye, Botswana, 00267
| | - Urska Vrhovsek
- Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michelle All'Adige, Via E. Mach, 1, Italy, 38010
| | - Cesare Lotti
- Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michelle All'Adige, Via E. Mach, 1, Italy, 38010
| | - José Paulo Sampaio
- UCIBIO, Departamento de Ciencias da Vida, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal , 2829-516
| | - Nerve Zhou
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Plot 10071, Boseja, Palapye, Botswana, 00267
| |
Collapse
|
5
|
Bezerril FF, Pimentel TC, de Aquino KP, Schabo DC, Rodrigues MHP, Dos Santos Lima M, Schaffner DW, Furlong EB, Magnani M. Wheat craft beer made from AFB 1-contaminated wheat malt contains detectable mycotoxins, retains quality attributes, but differs in some fermentation metabolites. Food Res Int 2023; 172:112774. [PMID: 37689839 DOI: 10.1016/j.foodres.2023.112774] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 09/11/2023]
Abstract
Levels of aflatoxin B1 (AFB1) were measured during the production of wheat craft beer made with wheat malt contaminated with AFB1 (1.23 µg/kg). A wheat craft beer made with non-contaminated wheat malt was produced for comparison purposes. AFB1 was measured after mashing (malt after the mashing process), and in spent grain (spent grains are filtered to collect the wort - remaining sugar-rich liquid), sweet wort, green beer, spent yeast, and in beer. Physicochemical parameters (pH, titratable acidity, color parameters, total soluble solids), sugars, organic acids, alcohols, and phenolics were evaluated after mashing, and in sweet wort, green beer, and beer samples. Density and yeast counts were determined over 120 h of sweet wort fermentation every 24 h. The AFB1 levels in the final beer were 0.22 µg/L, while the spent grains and spent yeasts contained 0.71 ± 0.17 and 0.11 ± 0.03 µg/kg of AFB1, respectively. AFB1 contamination did not influence the final product's physicochemical parameters, density during fermentation, fructose, or glycerol content. Higher yeast counts were observed during the first 48 h of non-contaminated wheat craft beer fermentation, with higher ethanol, citric acid, and propionic acid contents and lower glucose, malic acid, and lactic acid contents compared with beer contaminated with AFB1. Non-contaminated wheat craft beer also had higher concentrations of gallic acid, chlorogenic acid, catechin, procyanidin A2, and procyanidin B1. AFB1 contamination of wheat malt may not affect basic quality parameters in wheat craft beer but can influence the final product's organic acid and phenolic contents. Our findings show that if wheat craft beer is made with contaminated malt, AFB1 can remain in the final product and may pose a risk to consumers.
Collapse
Affiliation(s)
- Fabrícia França Bezerril
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Center of Technology, Federal University of Paraíba, Campus I, João Pessoa, PB 58051-900, Brazil
| | | | - Karine Peixoto de Aquino
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Center of Technology, Federal University of Paraíba, Campus I, João Pessoa, PB 58051-900, Brazil
| | - Danieli C Schabo
- Federal Institute of Education, Science and Technology of Rondônia, Campus Colorado do Oeste, BR 435, Km 63, Colorado Do Oeste, RO 76993-000, Brazil
| | - Marcy Heli Paiva Rodrigues
- Mycotoxin and Food Science Laboratory, School of Chemistry and Food, Federal University of Rio Grande - FURG, Avenida Itália km 8, Campus Carreiros, 96203-900 Rio Grande, Rio Grande do Sul, Brazil
| | - Marcos Dos Santos Lima
- Department of Food Technology, Institute Federal of Sertão Pernambucano, Petrolina, Brazil
| | - Donald W Schaffner
- Department of Food Science, Rutgers, The State University of New Jersey, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Eliana B Furlong
- Mycotoxin and Food Science Laboratory, School of Chemistry and Food, Federal University of Rio Grande - FURG, Avenida Itália km 8, Campus Carreiros, 96203-900 Rio Grande, Rio Grande do Sul, Brazil
| | - Marciane Magnani
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Center of Technology, Federal University of Paraíba, Campus I, João Pessoa, PB 58051-900, Brazil.
| |
Collapse
|
6
|
Millard JT, Peck RF, Beachy TM, Hepburn VL. Fermentation Gone Wild: A Biochemistry Laboratory Experiment. JOURNAL OF CHEMICAL EDUCATION 2023; 100:3076-3080. [PMID: 37577454 PMCID: PMC10413941 DOI: 10.1021/acs.jchemed.3c00499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/11/2023] [Indexed: 08/15/2023]
Abstract
An experiment for the upper-level biochemistry laboratory is described in which students isolate a wild yeast from environmental sources and characterize the strain for its potential in the brewing industry. In addition to providing valuable experience in important biochemical techniques, this study also illustrates key principles of bioprospecting, the search for new biological sources with potential commercial or scientific value. By foraging for yeast in the wild, students explore the microbial diversity of their local environment and potentially find untapped sources of yeast that produce novel flavors and aromas. Overall, students engage with hands-on experience in bioprospecting, allowing them to appreciate the value of exploring biological diversity and its potential applications in the brewing industry.
Collapse
Affiliation(s)
- Julie T. Millard
- Departments
of Chemistry and Biology, Colby College, Waterville, Maine 04901, United States
| | - Ronald F. Peck
- Departments
of Chemistry and Biology, Colby College, Waterville, Maine 04901, United States
| | - Tina M. Beachy
- Departments
of Chemistry and Biology, Colby College, Waterville, Maine 04901, United States
| | - Victoria L. Hepburn
- Departments
of Chemistry and Biology, Colby College, Waterville, Maine 04901, United States
| |
Collapse
|
7
|
Consumer Preferences for Craft Beer by Means of Artificial Intelligence: Are Italian Producers Doing Well? BEVERAGES 2023. [DOI: 10.3390/beverages9010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
To identify the key drivers of consumption, we analyzed consumer preferences and estimated the willingness to pay for craft beer compared with industrial products in Italy. For this purpose, we conducted an ad hoc survey of 469 craft beer drinkers and set up an econometric strategy using a machine learning estimation technique. The main results show that young consumers, the ability to perceive and evaluate quality, and the frequency of consumption are the main profile elements that, more than others, orient preferences. In the meantime, sustaining local beer producers, sharing good time with friends, and the perception of beer as healthier compared with other drinks are also important. The most preferable product attributes are can packaging and the search for unique taste.
Collapse
|
8
|
Increased Rate of Yeast Cultivation from Packaged Beer with Environmentally Relevant Anaerobic Handling. Microbiol Spectr 2022; 10:e0265622. [PMID: 36314915 PMCID: PMC9769982 DOI: 10.1128/spectrum.02656-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Beer production necessitates oxygen exclusion for the proper packaging and aging of the beer. Standard operating procedures, including those for quality testing, involve culturing microbes from packaged beer exposed to atmospheric oxygen, despite the generalized fact that packaged beer is an anaerobic environment. Our research goal was to apply an environmentally relevant culturing approach to improve yeast cultivation from bottled beer by attempting to ameliorate transplant shock. This is applicable to uniquely scrutinous quality assurance/control objectives and/or to grand cultivation goals, such as ancient beer samples. Although yeasts have the genetic capacity of oxygen protection, their epigenetic/biochemical states within anaerobic packaging may not adequately protect all cells from reactive oxygen species (ROS) at the moment of opening. Soon after opening, beer yeasts were found to be catalase negative, indicating deficient protection from at least one ROS. The general reduction/inhibition of growth was observed when the beer yeast was exposed to ROS in media, and atmospheric bottle opening was found to expose beer yeast to significantly increased levels of ROS. Our primary finding is that different oxygen handling methodologies (aerobic/microaerophilic/anaerobic) significantly impact the viable Saccharomyces yeast recovery rates of Bamberger's Mahr's Bräu Unfiltered Lager. Immediate anaerobic handling improved cultivation success rates, with significantly higher colony forming units (CFU)/mL being cultured, and reduced the volume of beer required to recover viable yeast. Aerobic standard operating procedures have mainly been developed to harvest yeast on large volumetric samples and/or samples with high viable cell numbers, but these procedures may be suboptimal and may underrepresent potential viable cell numbers. IMPORTANCE Procedures of beer production and packaging exclude oxygen to create a shelf-stable anaerobic environment, within which any viable organisms are stored. However, standard methodologies to cultivate microbes from such environments generally include opening in an oxygenated atmosphere. This study applies environmentally relevant culturing methods and compares the yeast recovery rates of beers handled in various oxygen conditions. When beer bottles were opened in anoxic conditions, higher colony counts were obtained, so a smaller volume of beer was required to recover viable cells. The yeast in beer, stored anaerobically, may not be biochemically prepared to fully protect cells from oxygen at the moment of opening. Negative catalase activity showed beer yeasts' vulnerabilities to reactive oxygen. Atmospheric opening may reduce viability, causing the underreporting of viable cells. Anaerobic opening could increase the odds of successfully detecting/cultivating viable cell(s) that are present, which is pertinent to uniquely stringent quality screens and ambitious culturing attempts from rare samples.
Collapse
|
9
|
Postigo V, O’Sullivan T, Elink Schuurman T, Arroyo T. Non-Conventional Yeast: Behavior under Pure Culture, Sequential and Aeration Conditions in Beer Fermentation. Foods 2022; 11:foods11223717. [PMID: 36429309 PMCID: PMC9689477 DOI: 10.3390/foods11223717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
The use of wild yeasts, isolated from different environments, is becoming the most interesting option for the production of new beers. The objective of this study is to evaluate the potential of seven non-conventional yeast strains from five different species (Saccharomyces cerevisiae, Hanseniaspora guilliermondii, Metschnikowia pulcherrima, Torulaspora delbrueckii, and Zygosaccharomyces bailii) isolated from Madrid agriculture to produce type ale beer. Wild yeast strains were evaluated at laboratory and pilot plant scales under different fermentation conditions (pure, aerated, and sequential culture). Strain S. cerevisiae SafAle S-04 was used as a reference. Throughout the fermentation of beer, volatile compounds were determined by GC and residual sugars by HPLC, among other parameters. The yeast strains used for the fermentation in pure culture conditions were unable to ferment maltose and maltotriose (0.73-1.18% v/v of ethanol). The results of the study under aerated conditions showed varying levels of higher alcohol and ester concentrations. It should be noted that the strain CLI 1057 (S. cerevisiae) fermented maltose in the presence of oxygen (Kluyver effect). This strain also showed a high production of 4-vinyl guaiacol, making it suitable for producing beers with a phenolic profile. Finally, three strains (H. guilliermondii, Z. bailii, and T. delbrueckii) were evaluated in sequential culture together with commercial strain and found to improve the organoleptic characteristics of the brewed beer. These approaches offer the opportunity to add new product characteristics to the beers.
Collapse
Affiliation(s)
- Vanesa Postigo
- Department of Agri-Food, Madrid Institute for Rural, Agriculture and Food Research and Development (IMIDRA), El Encín, A-2, km 38.2, 28805 Alcalá de Henares, Spain
- Brewery La Cibeles, Petróleo 34, 28918 Leganés, Spain
| | - Tadhg O’Sullivan
- Heineken Supply Chain B.V., Burgemeester Smeetsweg 1, 2382 PH Zoeterwoude, The Netherlands
| | - Tom Elink Schuurman
- Heineken Supply Chain B.V., Burgemeester Smeetsweg 1, 2382 PH Zoeterwoude, The Netherlands
| | - Teresa Arroyo
- Department of Agri-Food, Madrid Institute for Rural, Agriculture and Food Research and Development (IMIDRA), El Encín, A-2, km 38.2, 28805 Alcalá de Henares, Spain
- Correspondence:
| |
Collapse
|
10
|
Díaz AB, Durán-Guerrero E, Lasanta C, Castro R. From the Raw Materials to the Bottled Product: Influence of the Entire Production Process on the Organoleptic Profile of Industrial Beers. Foods 2022; 11:3215. [PMID: 37430968 PMCID: PMC9601789 DOI: 10.3390/foods11203215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/25/2022] Open
Abstract
In the past few years, there has been a growing demand by consumers for more complex beers with distinctive organoleptic profiles. The yeast, raw material (barley or other cereals), hops, and water used add to the major processing stages involved in the brewing process, including malting, mashing, boiling, fermentation, and aging, to significantly determine the sensory profile of the final product. Recent literature on this subject has paid special attention to the impact attributable to the processing conditions and to the fermentation yeast strains used on the aromatic compounds that are found in consumer-ready beers. However, no review papers are available on the specific influence of each of the factors that may affect beer organoleptic characteristics. This review, therefore, focuses on the effect that raw material, as well as the rest of the processes other than alcoholic fermentation, have on the organoleptic profile of beers. Such effect may alter beer aromatic compounds, foaming head, taste, or mouthfeel, among other things. Moreover, the presence of spoilage microorganisms that might lead to consumers' rejection because of their impact on the beers' sensory properties has also been investigated.
Collapse
Affiliation(s)
- Ana Belén Díaz
- Chemical Engineering and Food Technology Department, Faculty of Sciences-IVAGRO, University of Cadiz, Agrifood Campus of International Excellence (CeiA3), Polígono Río San Pedro, s/n, 11510 Puerto Real, Cadiz, Spain
| | - Enrique Durán-Guerrero
- Analytical Chemistry Department, Faculty of Sciences-IVAGRO, University of Cadiz, Agrifood Campus of International Excellence (CeiA3), Polígono Río San Pedro, s/n, 11510 Puerto Real, Cadiz, Spain
| | - Cristina Lasanta
- Chemical Engineering and Food Technology Department, Faculty of Sciences-IVAGRO, University of Cadiz, Agrifood Campus of International Excellence (CeiA3), Polígono Río San Pedro, s/n, 11510 Puerto Real, Cadiz, Spain
| | - Remedios Castro
- Analytical Chemistry Department, Faculty of Sciences-IVAGRO, University of Cadiz, Agrifood Campus of International Excellence (CeiA3), Polígono Río San Pedro, s/n, 11510 Puerto Real, Cadiz, Spain
| |
Collapse
|
11
|
Postigo V, Sanz P, García M, Arroyo T. Impact of Non- Saccharomyces Wine Yeast Strains on Improving Healthy Characteristics and the Sensory Profile of Beer in Sequential Fermentation. Foods 2022; 11:2029. [PMID: 35885271 PMCID: PMC9318315 DOI: 10.3390/foods11142029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 12/04/2022] Open
Abstract
The use of non-Saccharomyces yeasts in brewing is a useful tool for developing new products to meet the growing consumer demand for innovative products. Non-Saccharomyces yeasts can be used both in single and in mixed fermentations with Saccharomyces cerevisiae, as they are able to improve the sensory profile of beers, and they can be used to obtain functional beers (with a low ethanol content and melatonin production). The aim of this study was to evaluate this capacity in eight non-Saccharomyces strains isolated from Madrid agriculture. For this purpose, single fermentations were carried out with non-Saccharomyces strains and sequential fermentations with non-Saccharomyces and the commercial strain SafAle S-04. The Wickerhamomyces anomalus strain CLI 1028 was selected in pure culture for brewing beer with a low ethanol content (1.25% (v/v)) for its fruity and phenolic flavours and the absence of wort flavours. The best-evaluated strains in sequential fermentation were CLI 3 (Hanseniaspora vineae) and CLI 457 (Metschnikowia pulcherrima), due to their fruity notes as well as their superior bitterness, body, and balance. Volatile compounds and melatonin production were analysed by GC and HPLC, respectively. The beers were sensory-analysed by a trained panel. The results of the study show the potential of non-Saccharomyces strains in the production of low-alcohol beers, and as a flavour enhancement in sequential fermentation.
Collapse
Affiliation(s)
- Vanesa Postigo
- Department of Agri-Food, Madrid Institute for Rural, Food and Agriculture Research and Development (IMIDRA), El Encín, A-2, km 38.2, 28805 Alcala de Henares, Spain; (P.S.); (M.G.); (T.A.)
- Brewery La Cibeles, Petróleo 34, 28918 Leganes, Spain
| | - Paula Sanz
- Department of Agri-Food, Madrid Institute for Rural, Food and Agriculture Research and Development (IMIDRA), El Encín, A-2, km 38.2, 28805 Alcala de Henares, Spain; (P.S.); (M.G.); (T.A.)
| | - Margarita García
- Department of Agri-Food, Madrid Institute for Rural, Food and Agriculture Research and Development (IMIDRA), El Encín, A-2, km 38.2, 28805 Alcala de Henares, Spain; (P.S.); (M.G.); (T.A.)
| | - Teresa Arroyo
- Department of Agri-Food, Madrid Institute for Rural, Food and Agriculture Research and Development (IMIDRA), El Encín, A-2, km 38.2, 28805 Alcala de Henares, Spain; (P.S.); (M.G.); (T.A.)
| |
Collapse
|
12
|
Abstract
Non-Saccharomyces yeasts represent a very attractive alternative for the production of beers with superior sensory quality since they are able to enhance the flavour of beer. Furthermore, they can produce beers with low ethanol content due to the weak fermentative capacity of a large percentage of non-Saccharomyces species. The objective of this study was to evaluate the ability of 34 non-Saccharomyces yeast strains isolated from Madrilenian agriculture to produce a novel ale beer. The non-Saccharomyces yeast strains were screened at two scales in the laboratory. In the first screening, those with undesirable aromas were discarded and the selected strains were analysed. Thirty-three volatile compounds were analysed by GC, as well as melatonin production by HPLC, for the selected strains. Thirteen strains were then fermented at a higher scale in the laboratory for sensory evaluation. Only yeast strains of the species Schizosaccharomyces pombe and Lachancea thermotolerans were able to complete fermentation. Species such as Torulaspora delbrueckii, Metschnikowia pulcherrima, Wickerhamomyces anomalus, Hanseniaspora vineae, and Hanseniaspora guilliermondii could be used both for production of low ethanol beers and co-fermentation with a Saccharomyces yeast to improve the organoleptic characteristics of the beer. In addition, for these strains, the levels of melatonin obtained were higher than the concentrations found for Saccharomyces strains subjected to the same study conditions. The selected strains can be used in future trials to further determine their viability under different conditions and for different purposes.
Collapse
|
13
|
|
14
|
Xiao Y, Wang Z, Sun W, Luan Y, Piao M, Deng Y. Characterization and formation mechanisms of viable, but putatively non-culturable brewer's yeast induced by isomerized hop extract. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Statistical Significant Differences between Aroma Profiles of Beer Brewed from Sorghum. BEVERAGES 2021. [DOI: 10.3390/beverages7030056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There is currently an increased demand for foodstuffs that are classified as gluten-free including beer. Beer produced using gluten-free grains has a distinct flavor profile that differs greatly from that of beer produced from gluten-containing grains. The chemical difference between beers made from these two different grain sources has been explored and some key differences have been identified. Here malt sources containing gluten (barley) and malt without gluten (sorghum) were used to determine which compounds are statistically different based upon their concentrations. A total of 14 (7 barley and 7 sorghum) small-batch beers were made from malt extract. The aroma profile was sampled using SPME with chemical separation and identification and quantification using GC-MS. As expected, the differences were not the result of unique compounds but compounds present in differing amounts. A total of 17 compounds were found to be present in beer brewed from both extracts but in amounts that were highly significantly different.
Collapse
|
16
|
Cadenas R, Caballero I, Nimubona D, Blanco CA. Brewing with Starchy Adjuncts: Its Influence on the Sensory and Nutritional Properties of Beer. Foods 2021; 10:1726. [PMID: 34441504 PMCID: PMC8392023 DOI: 10.3390/foods10081726] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022] Open
Abstract
In brewing, the use of cereals (wheat, barley, maize, rice, sorghum, oats, rye or millet), pseudo-cereals (buckwheat, quinoa or amaranth) and tubers (sweet potato), as starch adjuncts, is being promoted for the production of a variety of high-quality beers, from sensory and nutritional points of view. The sensory properties of the obtained beer depend on the characteristics of each adjunct but also on the forms in which the adjunct is added: whole cereal, grits, malted, extruded grains, torrefied and syrup. Among these common forms, the extruded grains (maize or rice) produce a higher content of aroma compounds in beer. From a nutritional point of view, the use of non-conventional starch adjuncts, such as black rice, buckwheat or sweet potato, leads to an increase in the polyphenol content of the beer, and thus, its antioxidant capacity. Cereals such as maize, rice, sorghum or millet are the most promising for the production of gluten-free beers. A close relationship can be developed between the use of adjuncts in the beer industry and the use of commercial enzymes. Advances made by biotechnology to design new enzymes with different functionalities could be associated to a future increase in adjunct usage in brewing.
Collapse
Affiliation(s)
| | | | | | - Carlos A. Blanco
- Dpto. Ingeniería Agrícola y Forestal (Área de Tecnología de los Alimentos), E.T.S. Ingenierías Agrarias, Universidad de Valladolid, 34004 Palencia, Spain; (R.C.); (I.C.); (D.N.)
| |
Collapse
|
17
|
Abstract
Nowadays, in the beer sector, there is a wide range of products, which differ for the technologies adopted, raw materials used, and microorganisms involved in the fermentation processes. The quality of beer is directly related to the fermentation activity of yeasts that, in addition to the production of alcohol, synthesize various compounds that contribute to the definition of the compositional and organoleptic characteristics. The microbrewing phenomenon (craft revolution) and the growing demand for innovative and specialty beers has stimulated researchers and brewers to select new yeast strains possessing particular technological and metabolic characteristics. Up until a few years ago, the selection of starter yeasts used in brewing was exclusively carried out on strains belonging to the genus Saccharomyces. However, some non-Saccharomyces yeasts have a specific enzymatic activity that can help to typify the taste and beer aroma. These yeasts, used as a single or mixed starter with Saccharomyces strains, represent a new biotechnological resource to produce beers with particular properties. This review describes the role of Saccharomyces and non-Saccharomyces yeasts in brewing, and some future biotechnological perspectives.
Collapse
|