1
|
Jiang L, Yeung O, Ho W, Shum T, Wong M, Lam CSY, Chiou J. Multi-omics analysis reveals alterations of breastmilk metabolites and proteins in Hong Kong lactating mothers. FASEB J 2024; 38:e70240. [PMID: 39655667 PMCID: PMC11776036 DOI: 10.1096/fj.202401771r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/18/2024] [Accepted: 11/27/2024] [Indexed: 01/31/2025]
Abstract
The nutritional contents of breastmilk (BM) directly participate in neonatal metabolism via breastfeeding. Currently, there is limited research on BM metabolites and proteins compositions, and their alterations during the long lactation period in Hong Kong mothers. In this study, liquid chromatography-mass spectrometry-based metabolomics, lipidomics and proteomics studies were applied to compare the compositions in BM of Hong Kong lactating mothers at the 2nd, 6th, and 12th months after delivery. Distinct metabolomics and lipidomics signatures in 6th month versus 2nd month and 12th month versus 2nd month were observed, and a total of 19 differential metabolites and 105 lipids were identified. Metabolomics study showed the significant alterations in key pathways involved in biotin metabolism, amino acid, and fatty acid-associated metabolisms. Lipidomics analysis indicated the accumulation of triglyceride and ceramide during the lactation period. The remodeling of glycerophospholipids was also observed during 12-month period. Moreover, 28 differentially expressed proteins were identified and mainly associated with GO functions and KEGG pathways of ribosome and complement and coagulation cascades, which were validated by network analysis. Our research contributes to the understanding of the BM compositions and differences during the long lactation period in postpartum women of Hong Kong.
Collapse
Affiliation(s)
- Lilong Jiang
- Department of Food Science and NutritionThe Hong Kong Polytechnic UniversityHung HomHong Kong
- Research Institute for Future Food, The Hong Kong Polytechnic UniversityHung HomHong Kong
| | - Oi‐Yee Yeung
- Department of Food Science and NutritionThe Hong Kong Polytechnic UniversityHung HomHong Kong
| | - Wing‐Wa Ho
- Department of Food Science and NutritionThe Hong Kong Polytechnic UniversityHung HomHong Kong
- Research Institute for Future Food, The Hong Kong Polytechnic UniversityHung HomHong Kong
| | - Tim‐Fat Shum
- Department of Food Science and NutritionThe Hong Kong Polytechnic UniversityHung HomHong Kong
| | - Man‐Sau Wong
- Department of Food Science and NutritionThe Hong Kong Polytechnic UniversityHung HomHong Kong
- Research Institute for Future Food, The Hong Kong Polytechnic UniversityHung HomHong Kong
| | - Carly S. Y. Lam
- Centre for Myopia Research, School of OptometryThe Hong Kong Polytechnic UniversityHung HomHong Kong
- Centre for Eye and Vision Research (CEVR)Sha TinHong Kong
| | - Jiachi Chiou
- Department of Food Science and NutritionThe Hong Kong Polytechnic UniversityHung HomHong Kong
- Research Institute for Future Food, The Hong Kong Polytechnic UniversityHung HomHong Kong
| |
Collapse
|
2
|
Yang C, Pan J, Pang S, Hu S, Liu M, Zhang X, Song L, Ren X, Wang Z. Comparative analysis of the nutritional composition, digestibility, metabolomics profiles and growth influence of cow, goat and sheep milk powder diets in rat models. Front Nutr 2024; 11:1428938. [PMID: 39650706 PMCID: PMC11622695 DOI: 10.3389/fnut.2024.1428938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/01/2024] [Indexed: 12/11/2024] Open
Abstract
Introduction The diversity of dairy products and the increasing consumption levels have led to a growing interest in goat and sheep milk, which are rich in essential nutrients and functional components. The study aims to explore the nutritional composition, growth performance, digestibility, and serum metabolic differences of milk powders from cow, goat, and sheep using LC-MS/MS-based metabolomics in rat models. Methods Sixty male Sprague-Dawley rats were fed with whole cow, goat, and sheep milk powder samples , and their feces and urine were analyzed for fat and protein content. LC/MS analysis was conducted using a Dionex UltiMate 3000 UHPLC system coupled with a Thermo Q EXACTIVE mass spectrometer, with data processed using Wekemo Bioincloud for quality control, normalization, comparisons with the KEGG database, statistical analyses, and selection of differential metabolites. Results The sheep milk powder showed highest protein and fat content level, while cow and goat milk powders separately demonstrated higher lactose and carbohydrate levels. Each milk powder had a unique mineral profile, with sheep milk powder containing the highest calcium content. All groups exhibited consistent growth in body weight and high rates of protein and fat digestibility. Metabolomics analysis revealed distinct metabolic profiles, with goat milk powder linked to steroid hormone biosynthesis and sheep milk powder associated with hormone regulation and bile acid pathways. Conclusion This study offers valuable insights into the metabolic implications of different milk powder sources, informing dietary choices and facilitating the development of targeted public health strategies to optimize nutritional intake and promote overall well-being.
Collapse
Affiliation(s)
- Chun Yang
- School of Public Health, Capital Medical University, Beijing, China
| | - Jiancun Pan
- Feihe Research Institute,Heilongjiang Feihe Dairy Co., Ltd., Beijing, China
| | - Shaojie Pang
- Feihe Research Institute,Heilongjiang Feihe Dairy Co., Ltd., Beijing, China
| | - Shuang Hu
- Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Miao Liu
- School of Public Health, Capital Medical University, Beijing, China
| | - Xinyan Zhang
- Feihe Research Institute,Heilongjiang Feihe Dairy Co., Ltd., Beijing, China
| | - Liping Song
- Feihe Research Institute,Heilongjiang Feihe Dairy Co., Ltd., Beijing, China
| | - Xiangnan Ren
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhongli Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Jiaxing University, The Second Hospital of Jiaxing, Jiaxing, China
- School of Medicine and Nursing, Huzhou University, Huzhou, Zhejiang, China
| |
Collapse
|
3
|
Kandasamy S, Park WS, Bae IS, Yoo J, Yun J, Hoa VB, Ham JS. HRMAS-NMR-Based Metabolomics Approach to Discover Key Differences in Cow and Goat Milk Yoghurt Metabolomes. Foods 2024; 13:3483. [PMID: 39517267 PMCID: PMC11545400 DOI: 10.3390/foods13213483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
This study highlights the differences in the metabolomes of cow milk yoghurt (CY) and goat milk yoghurt (GY) using a nuclear magnetic resonance (NMR)-based metabolomic approach. The 1H HRMAS-NMR spectrum displayed 21 metabolites comprising organic acids, sugars, amino acids, amino acid derivatives and phospholipids. The orthogonal partial least squares discriminant analysis model clearly separated CY and GY groups, implying differences in metabolite composition. The corresponding Variable Importance in Projection (VIP) plot revealed that choline, sn-glycero-3-phosphocholine, O-phosphocholine, fucose, citrate, sucrose, glucose and lactose mainly contributed to the group separation (VIP > 1). Hierarchical cluster analysis further confirmed the metabolome similarities and differences between CY and GY. Additionally, 12 significantly differential metabolites (with a fold change > 1.5 and p-value < 0.05) were identified, with 1 downregulated and 11 upregulated. Pathway impact analysis revealed the correlation of significant metabolites with starch and sucrose metabolism, galactose metabolism, and the citrate cycle. Furthermore, receiver operating characteristic curve analysis identified eight metabolites (choline, sn-glycero-3-phosphocholine, fucose, O-phosphocholine, glucose, citrate, 2-oxoglutarate, lactose and sucrose) as candidate biomarkers. This study represents the first utilization of HRMAS-NMR to analyze the metabolomic profiles of yoghurt made from cow and goat milk. In conclusion, these findings provide preliminary information on how NMR-based metabolomics can discriminate the metabolomes of yoghurt prepared from the milk of two different animals, which may be valuable for authenticity and adulteration assessments.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jun-Sang Ham
- Animal Products Research and Development Division, National Institute of Animal Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| |
Collapse
|
4
|
Vinothkanna A, Dar OI, Liu Z, Jia AQ. Advanced detection tools in food fraud: A systematic review for holistic and rational detection method based on research and patents. Food Chem 2024; 446:138893. [PMID: 38432137 DOI: 10.1016/j.foodchem.2024.138893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Modern food chain supply management necessitates the dire need for mitigating food fraud and adulterations. This holistic review addresses different advanced detection technologies coupled with chemometrics to identify various types of adulterated foods. The data on research, patent and systematic review analyses (2018-2023) revealed both destructive and non-destructive methods to demarcate a rational approach for food fraud detection in various countries. These intricate hygiene standards and AI-based technology are also summarized for further prospective research. Chemometrics or AI-based techniques for extensive food fraud detection are demanded. A systematic assessment reveals that various methods to detect food fraud involving multiple substances need to be simple, expeditious, precise, cost-effective, eco-friendly and non-intrusive. The scrutiny resulted in 39 relevant experimental data sets answering key questions. However, additional research is necessitated for an affirmative conclusion in food fraud detection system with modern AI and machine learning approaches.
Collapse
Affiliation(s)
- Annadurai Vinothkanna
- School of Life and Health Sciences, Hainan University, Haikou 570228, China; Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, China.
| | - Owias Iqbal Dar
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Zhu Liu
- School of Life and Health Sciences, Hainan University, Haikou 570228, China.
| | - Ai-Qun Jia
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, China.
| |
Collapse
|
5
|
Ji Z, Zhang J, Deng C, Guo T, Han R, Yang Y, Zang C, Chen Y. Identification of pasteurized mare milk and powder adulteration with bovine milk using quantitative proteomics and metabolomics approaches. Food Chem X 2024; 22:101265. [PMID: 38468636 PMCID: PMC10926301 DOI: 10.1016/j.fochx.2024.101265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/13/2024] Open
Abstract
Adulteration in dairy products presents food safety challenges, driven by economic factors. Processing may change specific biomarkers, thus affecting their effectiveness in detection. In this study, proteomics and metabolomics approaches were to investigate the detection of bovine milk (BM) constituents adulteration in pasteurized mare milk (PMM) and mare milk powder (MMP). Several bovine proteins and metabolites were identified, with their abundances in PMM and MMP increasing upon addition of BM. Proteins like osteopontin (OPN) and serotransferrin (TF) detected adulteration down to 1 % in PMM, whereas these proteins in MMP were utilized to identify 10 % adulteration. Biotin and N6-Me-adenosine were effective in detecting adulteration in PMM as low as 10 % and 1 % respectively, while in MMP, their detection limits extend down to 0.1 %. These findings offer insights for authenticating mare milk products and underscore the influence of processing methods on biomarker levels, stressing the need to consider these effects in milk product authentication.
Collapse
Affiliation(s)
- Zhongyuan Ji
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junyu Zhang
- Institute of Feed Research, Xinjiang Academy of Animal Science, Urumqi 830052, Xinjiang, China
| | - Chunxia Deng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Tongjun Guo
- Institute of Feed Research, Xinjiang Academy of Animal Science, Urumqi 830052, Xinjiang, China
| | - Rongwei Han
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Yongxin Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, Shandong, China
| | - Changjiang Zang
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
| | - Yong Chen
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
| |
Collapse
|
6
|
de Souza HMR, Pereira TTP, de Sá HC, Alves MA, Garrett R, Canuto GAB. Critical Factors in Sample Collection and Preparation for Clinical Metabolomics of Underexplored Biological Specimens. Metabolites 2024; 14:36. [PMID: 38248839 PMCID: PMC10819689 DOI: 10.3390/metabo14010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
This review article compiles critical pre-analytical factors for sample collection and extraction of eight uncommon or underexplored biological specimens (human breast milk, ocular fluids, sebum, seminal plasma, sweat, hair, saliva, and cerebrospinal fluid) under the perspective of clinical metabolomics. These samples are interesting for metabolomics studies as they reflect the status of living organisms and can be applied for diagnostic purposes and biomarker discovery. Pre-collection and collection procedures are critical, requiring protocols to be standardized to avoid contamination and bias. Such procedures must consider cleaning the collection area, sample stimulation, diet, and food and drug intake, among other factors that impact the lack of homogeneity of the sample group. Precipitation of proteins and removal of salts and cell debris are the most used sample preparation procedures. This review intends to provide a global view of the practical aspects that most impact results, serving as a starting point for the designing of metabolomic experiments.
Collapse
Affiliation(s)
- Hygor M. R. de Souza
- Instituto de Química, Universidade Federal do Rio de Janeiro, LabMeta—LADETEC, Rio de Janeiro 21941-598, Brazil;
| | - Tássia T. P. Pereira
- Departamento de Genética, Ecologia e Evolucao, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
- Departamento de Biodiversidade, Evolução e Meio Ambiente, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, Brazil
| | - Hanna C. de Sá
- Departamento de Química Analítica, Instituto de Química, Universidade Federal da Bahia, Salvador 40170-115, Brazil;
| | - Marina A. Alves
- Instituto de Pesquisa de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-599, Brazil;
| | - Rafael Garrett
- Instituto de Química, Universidade Federal do Rio de Janeiro, LabMeta—LADETEC, Rio de Janeiro 21941-598, Brazil;
- Department of Laboratory Medicine, Boston Children’s Hospital—Harvard Medical School, Boston, MA 02115, USA
| | - Gisele A. B. Canuto
- Departamento de Química Analítica, Instituto de Química, Universidade Federal da Bahia, Salvador 40170-115, Brazil;
| |
Collapse
|
7
|
Bakshi S, Paswan VK, Yadav SP, Bhinchhar BK, Kharkwal S, Rose H, Kanetkar P, Kumar V, Al-Zamani ZAS, Bunkar DS. A comprehensive review on infant formula: nutritional and functional constituents, recent trends in processing and its impact on infants' gut microbiota. Front Nutr 2023; 10:1194679. [PMID: 37415910 PMCID: PMC10320619 DOI: 10.3389/fnut.2023.1194679] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/30/2023] [Indexed: 07/08/2023] Open
Abstract
Human milk is considered the most valuable form of nutrition for infants for their growth, development and function. So far, there are still some cases where feeding human milk is not feasible. As a result, the market for infant formula is widely increasing, and formula feeding become an alternative or substitute for breastfeeding. The nutritional value of the formula can be improved by adding functional bioactive compounds like probiotics, prebiotics, human milk oligosaccharides, vitamins, minerals, taurine, inositol, osteopontin, lactoferrin, gangliosides, carnitine etc. For processing of infant formula, diverse thermal and non-thermal technologies have been employed. Infant formula can be either in powdered form, which requires reconstitution with water or in ready-to-feed liquid form, among which powder form is readily available, shelf-stable and vastly marketed. Infants' gut microbiota is a complex ecosystem and the nutrient composition of infant formula is recognized to have a lasting effect on it. Likewise, the gut microbiota establishment closely parallels with host immune development and growth. Therefore, it must be contemplated as an important factor for consideration while developing formulas. In this review, we have focused on the formulation and manufacturing of safe and nutritious infant formula equivalent to human milk or aligning with the infant's needs and its ultimate impact on infants' gut microbiota.
Collapse
Affiliation(s)
- Shiva Bakshi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Vinod Kumar Paswan
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Satya Prakash Yadav
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Basant Kumar Bhinchhar
- Department of Livestock Production Management, Sri Karan Narendra Agriculture University, Jobner, India
| | - Sheela Kharkwal
- Department of Agriculture Economics, Sri Karan Narendra Agriculture University, Jobner, India
| | - Hency Rose
- Division of Dairy Technology, ICAR—National Dairy Research Institute, Karnal, India
| | - Prajasattak Kanetkar
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Vishal Kumar
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Zakarya Ali Saleh Al-Zamani
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
- Department of Food Technology and Science, Faculty of Agriculture and Veterinary Medicine, Ibb University, Ibb, Yemen
| | - Durga Shankar Bunkar
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
8
|
Sharma H, Ozogul F. Mass spectrometry-based techniques for identification of compounds in milk and meat matrix. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 104:43-76. [PMID: 37236734 DOI: 10.1016/bs.afnr.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Food including milk and meat is often viewed as the mixture of different components such as fat, protein, carbohydrates, moisture and ash, which are estimated using well-established protocols and techniques. However, with the advent of metabolomics, low-molecular weight substances, also known as metabolites, have been recognized as one of the major factors influencing the production, quality and processing. Therefore, different separation and detection techniques have been developed for the rapid, robust and reproducible separation and identification of compounds for efficient control in milk and meat production and supply chain. Mass-spectrometry based techniques such as GC-MS and LC-MS and nuclear magnetic resonance spectroscopy techniques have been proven successful in the detailed food component analysis owing to their associated benefits. Different metabolites extraction protocols, derivatization, spectra generated, data processing followed by data interpretation are the major sequential steps for these analytical techniques. This chapter deals with not only the detailed discussion of these analytical techniques but also sheds light on various applications of these analytical techniques in milk and meat products.
Collapse
Affiliation(s)
- Heena Sharma
- Food Technology Lab, Dairy Technology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey.
| |
Collapse
|
9
|
Baumgartel K, Stevens M, Vijayakumar N, Saint Fleur A, Prescott S, Groer M. The Human Milk Metabolome: A Scoping Literature Review. J Hum Lact 2023; 39:255-277. [PMID: 36924445 DOI: 10.1177/08903344231156449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
BACKGROUND Human milk is a complex source of nutrition and other bioactives that protects infants from disease, holding a lifetime of beneficial effects. The field of metabolomics provides a robust platform through which we can better understand human milk at a level rarely examined. RESEARCH AIM To Identify, describe, synthesize, and critically analyze the literature within the past 5 years related to the human milk metabolome. METHODS We conducted a scoping literature review and quality analysis of the recent science reflecting untargeted metabolomic approaches to examining human milk. We searched six databases using the terms "breast milk," "metabolome," "metabolite," and "human milk," Out of more than 1,069 abstracts, we screened and identified 22 articles that met our inclusion criteria. RESULTS We extracted data related to the study author, geographic location, research design, analyses, platform used, and results. We also extracted data related to human milk research activities, including collection protocol, infant/maternal considerations, and time. Selected studies focused on a variety of phenotypes, including maternal and infant disease. Investigators used varying approaches to evaluate the metabolome, and differing milk collection protocols were observed. CONCLUSION The human milk metabolome is informed by many factors-which may contribute to infant health outcomes-that have resulted in disparate milk metabolomic profiles. Standardized milk collection and storage procedures should be implemented to minimize degradation. Investigators may use our findings to develop research questions that test a targeted metabolomic approach.
Collapse
Affiliation(s)
| | - Monica Stevens
- College of Medicine, University of South Florida, Tampa, FL, USA
| | - Nisha Vijayakumar
- School of Public Health, University of South Florida, Tampa, FL, USA
| | | | | | - Maureen Groer
- College of Nursing, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
10
|
Kahraman M, Yurtseven S, Sakar E, Daş A, Yalçın H, Güngören G, Boyraz MÜ, Koyuncu İ. Pistachio, Pomegranate and Olive Byproducts Added to Sheep Rations Change the Biofunctional Properties of Milk through the Milk Amino Acid Profile. Food Sci Anim Resour 2023; 43:124-138. [PMID: 36789194 PMCID: PMC9890361 DOI: 10.5851/kosfa.2022.e65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022] Open
Abstract
This study was carried out to determine the effects of adding pistachio shell (PIS), pomegranate hull (POM), and olive pulp (OP) to the diet on milk amino acid and fatty acid parameters in Awassi sheep. In the study, 40 head of Awassi sheep, which gave birth at least twice, were used as animal material. Sheep were fed a control diet without added byproducts (CON), rations containing PIS, POM, and OP. Milk amino acid profile was determined by liquid chromatography-tandem mass spectrometry, milk fatty acid gas chromatography-flame ionization detection device. There was a dramatic reduction in alanine, citrulline, glutamine, glutamic acid, glycine, leucine, ornithine and alphaaminoadipic acid in the research groups. In the PIS group, argininosuccinic acid, gammaminobutyric acid, beta-alanine and sarcosine; In the POM group, asparagine, gammaminobutyric acid, beta-alanine, and taurine; In the OP group, a significant positive increase was found in terms of alanine, histidine, gammaminobutyric acid, and taurine amino acids. The applications in the study did not have a statistically significant effect on the ratio of short, medium and long chain fatty acids in milk (p>0.05). In the presented study, it was determined that PIS, POM, and OP, which were added to the sheep rations at a rate of 5%, caused significant changes in the milk amino acid profiles. In this change in milk amino acid profiles, the benefit-harm relationship should be considered.
Collapse
Affiliation(s)
- Mücahit Kahraman
- Department of Animal Science, Faculty of
Veterinary Medicine, Harran University,
Şanlıurfa 63300, Turkey,Corresponding author:
Mücahit Kahraman, Department of Animal Science, Faculty of Veterinary
Medicine, Harran University, Şanlıurfa 63300, Turkey, Tel:
+90-414-318-3918, Fax: +90-414-318-3922, E-mail:
| | - Sabri Yurtseven
- Department of Animal Science, Faculty of
Agriculture, Harran University, Şanlıurfa 63300,
Turkey
| | - Ebru Sakar
- Department of Horticulture, Faculty of
Agriculture, Harran University, Şanlıurfa 63300,
Turkey
| | - Aydın Daş
- Department of Animal Science, Faculty of
Veterinary Medicine, Harran University,
Şanlıurfa 63300, Turkey
| | - Hamza Yalçın
- Department of Biostatistics, Faculty of
Agriculture, Harran University, Şanlıurfa 63300,
Turkey
| | - Gülşah Güngören
- Department of Animal Science, Faculty of
Veterinary Medicine, Harran University,
Şanlıurfa 63300, Turkey
| | - Mustafa Ünal Boyraz
- Histology Department, Faculty of
Veterinary Medicine, Harran University,
Şanlıurfa 63300, Turkey
| | - İsmail Koyuncu
- Department of Biochemistry, Faculty of
Medicine, Harran University, Şanlıurfa 63300,
Turkey
| |
Collapse
|
11
|
Ji Z, Zhang J, Deng C, Hu Z, Du Q, Guo T, Wang J, Fan R, Han R, Yang Y. Identification of mare milk adulteration with cow milk by liquid chromatography-high resolution mass spectrometry based on proteomics and metabolomics approaches. Food Chem 2022; 405:134901. [DOI: 10.1016/j.foodchem.2022.134901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/09/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
|
12
|
Jia W, Di C, Zhang R, Shi L. Application of liquid chromatography mass spectrometry-based lipidomics to dairy products research: An emerging modulator of gut microbiota and human metabolic disease risk. Food Res Int 2022; 157:111206. [DOI: 10.1016/j.foodres.2022.111206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 12/19/2022]
|
13
|
Impact of different dietary regimens on the lipidomic profile of mare’s milk. Food Res Int 2022; 156:111305. [DOI: 10.1016/j.foodres.2022.111305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 01/18/2023]
|
14
|
Arifah MF, Irnawati, Ruslin, Nisa K, Windarsih A, Rohman A. The Application of FTIR Spectroscopy and Chemometrics for the Authentication Analysis of Horse Milk. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2022; 2022:7643959. [PMID: 35242875 PMCID: PMC8888094 DOI: 10.1155/2022/7643959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 12/02/2022]
Abstract
Expensive milk such as horse's milk (HM) may be the target of adulteration by other milk such as goat's milk (GM) and cow's milk (CM). FTIR spectroscopy in combination with chemometrics of linear discriminant analysis (LDA) and multivariate calibrations of partial least square regression (PLSR) and principal component regression (PCR) was used for authentication of HM from GM and CM. Milk was directly subjected to attenuated total reflectance (ATR) spectral measurement at midinfrared regions (4000-650 cm-1). Results showed that LDA could make clear discrimination between HM and HM adulterated with CM and GM without any misclassification observed. PLSR using 2nd derivative spectra at 3200-2800 and 1300-1000 cm-1 provided the best model for the relationship between actual values of GM and FTIR predicted values than PCR. At this condition, R 2 values for calibration and validation models obtained were 0.9995 and 0.9612 with RMSEC and RMSEP values of 0.0093 and 0.0794. PLSR using normal FTIR spectra at 3800-3000 and 1500-1000 cm-1 offered R 2 for the relationship between actual values of CM and FTIR predicted values of >0.99 in calibration and validation models with low errors of RMSEC of 0.0164 and RMSEP of 0.0336 during authentication of HM from CM. Therefore, FTIR spectroscopy in combination with LDA and PLSR is an effective method for authentication of HM from GM and CM.
Collapse
Affiliation(s)
- Mitsalina Fildzah Arifah
- Center of Excellence, Institute for Halal Industry and Systems, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Irnawati
- Faculty of Pharmacy, Halu Oleo University, Kendari 93232, Indonesia
| | - Ruslin
- Faculty of Pharmacy, Halu Oleo University, Kendari 93232, Indonesia
| | - Khoirun Nisa
- Research Division for Natural Product Technology (BPTBA), National Research and Innovation Agency (BRIN), Yogyakarta 55861, Indonesia
| | - Anjar Windarsih
- Research Division for Natural Product Technology (BPTBA), National Research and Innovation Agency (BRIN), Yogyakarta 55861, Indonesia
| | - Abdul Rohman
- Center of Excellence, Institute for Halal Industry and Systems, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| |
Collapse
|
15
|
Hyuk Suh J. Critical review: metabolomics in dairy science - evaluation of milk and milk product quality. Food Res Int 2022; 154:110984. [DOI: 10.1016/j.foodres.2022.110984] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/20/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022]
|
16
|
Li Y, Ma QS, Zhou MM, Zhang ZW, Zhan YD, Liu GQ, Zhu MX, Wang CF. A metabolomics comparison in milk from two Dezhou donkey strains. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-03962-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Sharma H, Ozogul F, Bartkiene E, Rocha JM. Impact of lactic acid bacteria and their metabolites on the techno-functional properties and health benefits of fermented dairy products. Crit Rev Food Sci Nutr 2021:1-23. [PMID: 34845955 DOI: 10.1080/10408398.2021.2007844] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
After conversion of lactose to lactic acid, several biochemical changes occur such as enhanced protein digestibility, fatty acids release, and production of bioactive compounds etc. during the fermentation process that brings nutritional and quality improvement in the fermented dairy products (FDP). A diverse range of lactic acid bacteria (LAB) is being utilized for the development of FDP with specific desirable techno-functional attributes. This review contributes to the knowledge of basic pathways and changes during fermentation process and the current research on techniques used for identification and quantification of metabolites. The focus of this article is mainly on the metabolites responsible for maintaining the desired attributes and health benefits of FDP as well as their characterization from raw milk. LAB genera including Lactobacillus, Streptococcus, Leuconostoc, Pediococcus and Lactococcus are involved in the fermentation of milk and milk products. LAB species accrue these benefits and desirable properties of FDP producing the bioactive compounds and metabolites using homo-fermentative and heterofermentative pathways. Generation of metabolites vary with incubation and other processing conditions and are analyzed and quantified using highly advanced and sophisticated instrumentation including nuclear magnetic resonance, mass-spectrometry based techniques. Health benefits of FDP are mainly possible due to the biological roles of such metabolites that also cause technological improvements desired by dairy manufacturers and consumers.
Collapse
Affiliation(s)
- Heena Sharma
- Food Technology Lab, Dairy Technology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, University of Cukurova, Adana, Turkey
| | - Elena Bartkiene
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - João Miguel Rocha
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Department of Chemical Engineering (DEQ), Faculty of Engineering, University of Porto FEUP), Porto, Portugal
| |
Collapse
|
18
|
Jia W, Wang X, Wu X, Shi L. Monitoring contamination of perchlorate migrating along the food chain to dairy products poses risks to human health. Food Chem 2021; 374:131633. [PMID: 34848089 DOI: 10.1016/j.foodchem.2021.131633] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022]
Abstract
Assessments of human exposure to sodium perchlorate via dairy sources are limited. The current study applied untargeted metabolomics (LOD, 1.08-35.60 μg L-1; LOQ, 2.54-90.58 μg L-1; RSD < 6.2%) and proteomics methods by UHPLC-Q-Orbitrap HRMS to investigate the metabolic pathways and nutritional quality of goat milk contaminated with sodium perchlorate. Specifically, 11 metabolites including lactose (from 2.01 to 0.58 mg L-1), adenosine 5'-monophosphate (from 1.23 to 0.45 mg L-1), hypoxanthine (from 0.63 to 0.08 mg L-1), etc. and 3 crucial enzymes include α-lactalbumin, xanthine dehydrogenase and creatine kinase related to the quality traits of goat milk after sodium perchlorate treatment. Overall, except for spermidine, other related metabolites significantly decreased with the increase of sodium perchlorate concentration 0-160 μg L-1 and storage time (4-12 h). Collectively, we provide previously uncharacterized goat milk nutritional quality degradation mechanism induced by sodium perchlorate and a reference to ensure its safe use in human health.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Xin Wang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Xixuan Wu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| |
Collapse
|
19
|
Chang R, Ma C, Yu C, Zhang Q, Li Y, You J, Zhang S. Analysis of estrogens in milk samples using ionic liquid-modified covalent organic framework and stable isotope labeling technique. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03830-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|