1
|
Karabulut G, Subasi BG, Ivanova P, Goksen G, Chalova V, Capanoglu E. Towards sustainable and nutritional-based plant protein sources: A review on the role of rapeseed. Food Res Int 2025; 202:115553. [PMID: 39967129 DOI: 10.1016/j.foodres.2024.115553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/29/2024] [Accepted: 12/28/2024] [Indexed: 02/20/2025]
Abstract
Rapeseed (Brassica napus L.), commonly known as canola, is a key oilseed crop with an emerging interest in its protein content. Rapeseed proteins, primarily cruciferin and napin, are valued for their balanced amino acid profile, making them a promising source of plant-based protein. These proteins demonstrate diverse functional properties, such as emulsification, foaming, and gelling, which are essential for food applications. However, the extraction and isolation processes pose challenges, particularly in retaining functionality while minimizing antinutritional compounds like glucosinolates and phytates. Additionally, off-flavors, bitterness, and limited solubility hinder their widespread use. To address these challenges, novel extraction and modification techniques, including enzymatic and fermentation methods, have been explored to enhance protein functionality and improve flavor profiles. Moreover, sustainable production methods, such as enzymatic hydrolysis and membrane filtration, have been developed to reduce environmental impacts, resource consumption, and waste generation associated with rapeseed protein production. Despite the current challenges, rapeseed protein holds significant potential beyond food, with applications in biomedicine and materials science, such as biodegradable films and drug delivery systems. Future research should focus on optimizing extraction techniques, improving functional properties, and mitigating off-flavors to fully unlock the potential of rapeseed protein as a sustainable and versatile protein source for the growing global demand.
Collapse
Affiliation(s)
- Gulsah Karabulut
- Department of Food Engineering, Faculty of Engineering, Sakarya University, 54187 Sakarya, Türkiye
| | - Busra Gultekin Subasi
- Center for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N 8200, Denmark
| | - Petya Ivanova
- Department of Biochemistry and Nutrition, University of Food Technologies, 26 Maritsa Blvd, 4002 Plovdiv, Bulgaria
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Türkiye
| | - Vesela Chalova
- Department of Biochemistry and Nutrition, University of Food Technologies, 26 Maritsa Blvd, 4002 Plovdiv, Bulgaria
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Türkiye; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
2
|
Axentii M, Codină GG. Exploring the Nutritional Potential and Functionality of Hemp and Rapeseed Proteins: A Review on Unveiling Anti-Nutritional Factors, Bioactive Compounds, and Functional Attributes. PLANTS (BASEL, SWITZERLAND) 2024; 13:1195. [PMID: 38732410 PMCID: PMC11085551 DOI: 10.3390/plants13091195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
Plant-based proteins, like those derived from hemp and rapeseed can contribute significantly to a balanced diet and meet human daily nutritional requirements by providing essential nutrients such as protein, fiber, vitamins, minerals, and antioxidants. According to numerous recent research papers, the consumption of plant-based proteins has been associated with numerous health benefits, including a reduced risk of chronic diseases such as heart disease, diabetes, and certain cancers. Plant-based diets are often lower in saturated fat and cholesterol and higher in fiber and phytonutrients, which can support overall health and well-being. Present research investigates the nutritional attributes, functional properties, and potential food applications of hemp and rapeseed protein for a potential use in new food-product development, with a certain focus on identifying anti-nutritional factors and bioactive compounds. Through comprehensive analysis, anti-nutritional factors and bioactive compounds were elucidated, shedding light on their impact on protein quality and digestibility. The study also delves into the functional properties of hemp and rapeseed protein, unveiling their versatility in various food applications. Insights from this research contribute to a deeper understanding of the nutritional value and functional potential of hemp and rapeseed protein, paving the way for their further utilization in innovative food products with enhanced nutritional value and notable health benefits.
Collapse
|
3
|
Gazza L, Menga V, Taddei F, Nocente F, Galassi E, Natale C, Lanzanova C, Paone S, Fares C. Nutritional Traits, Pasting Properties and Antioxidant Profile of Selected Genotypes of Sorghum, Oat and Maize Eligible for Gluten-Free Products. Foods 2024; 13:990. [PMID: 38611296 PMCID: PMC11011531 DOI: 10.3390/foods13070990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
The technological and nutritional traits of food-grade sorghum hybrids, hulled/naked oat varieties and maize genotypes of different colors were studied for novel and healthier gluten-free foods. Oat genotypes showed the highest protein content, followed by maize and sorghum. The total starch and the total dietary fiber content were quite similar among the three species. Great variation was found in the amylose content, and the highest was in sorghum (27.12%), followed by oat 16.71% and maize 10.59%. Regarding the pasting profile, the rank of Peak Viscosity was sorghum (742.8 Brabender Unit, BU), followed by maize (729.3 BU) and oat (685.9 BU). Oat and sorghum genotypes had similar average breakdown (407.7 and 419.9 BU, respectively) and setback (690.7 and 682.1 BU, respectively), whereas maize showed lower values for both parameters (384.1 BU and 616.2 BU, respectively). The total antioxidant capacity, only in maize, significantly correlated with total flavonoid, phenolic and proanthocyanidin contents, indicating that all the measured compounds contributed to antioxidant capacity. The study indicated the importance of sounding out the nutritional and technological characteristics of gluten-free cereals in order to select suitable cultivars to be processed in different gluten-free foods with better and healthier quality.
Collapse
Affiliation(s)
- Laura Gazza
- CREA-IT Consiglio Per la Ricerca in Agricoltura e L’analisi Dell’economia Agraria Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Via Manziana, 30, 00189 Roma, Italy; (L.G.); (F.T.); (F.N.); (E.G.); (C.N.)
| | - Valeria Menga
- CREA-CI Consiglio Per la Ricerca in Agricoltura e L’analisi Dell’economia Agraria Centro di Ricerca Cerealicoltura e Colture Industriali, S.S. 673, km 25.200, 71122 Foggia, Italy; (V.M.); (S.P.)
| | - Federica Taddei
- CREA-IT Consiglio Per la Ricerca in Agricoltura e L’analisi Dell’economia Agraria Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Via Manziana, 30, 00189 Roma, Italy; (L.G.); (F.T.); (F.N.); (E.G.); (C.N.)
| | - Francesca Nocente
- CREA-IT Consiglio Per la Ricerca in Agricoltura e L’analisi Dell’economia Agraria Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Via Manziana, 30, 00189 Roma, Italy; (L.G.); (F.T.); (F.N.); (E.G.); (C.N.)
| | - Elena Galassi
- CREA-IT Consiglio Per la Ricerca in Agricoltura e L’analisi Dell’economia Agraria Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Via Manziana, 30, 00189 Roma, Italy; (L.G.); (F.T.); (F.N.); (E.G.); (C.N.)
| | - Chiara Natale
- CREA-IT Consiglio Per la Ricerca in Agricoltura e L’analisi Dell’economia Agraria Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Via Manziana, 30, 00189 Roma, Italy; (L.G.); (F.T.); (F.N.); (E.G.); (C.N.)
| | - Chiara Lanzanova
- CREA-CI Consiglio Per la Ricerca in Agricoltura e L’analisi Dell’economia Agraria Centro di Ricerca Cerealicoltura e Colture Industriali, Via Stezzano, 24, 24126 Bergamo, Italy;
| | - Silvana Paone
- CREA-CI Consiglio Per la Ricerca in Agricoltura e L’analisi Dell’economia Agraria Centro di Ricerca Cerealicoltura e Colture Industriali, S.S. 673, km 25.200, 71122 Foggia, Italy; (V.M.); (S.P.)
| | - Clara Fares
- CREA-CI Consiglio Per la Ricerca in Agricoltura e L’analisi Dell’economia Agraria Centro di Ricerca Cerealicoltura e Colture Industriali, S.S. 673, km 25.200, 71122 Foggia, Italy; (V.M.); (S.P.)
| |
Collapse
|
4
|
Zhang M, Wang O, Cai S, Zhao L, Zhao L. Composition, functional properties, health benefits and applications of oilseed proteins: A systematic review. Food Res Int 2023; 171:113061. [PMID: 37330842 DOI: 10.1016/j.foodres.2023.113061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/19/2023]
Abstract
Common oilseeds, such as soybean, peanut, rapeseed, sunflower seed, sesame seed and chia seed, are key sources of edible vegetable oils. Their defatted meals are excellent natural sources of plant proteins that can meet consumers' demand for health and sustainable substitutes for animal proteins. Oilseed proteins and their derived peptides are also associated with many health benefits, including weight loss and reduced risks of diabetes, hypertension, metabolic syndrome and cardiovascular events. This review summarizes the current status of knowledge on the protein and amino acid composition of common oilseeds as well as the functional properties, nutrition, health benefits and food applications of oilseed protein. Currently, oilseeds are widely applied in the food industry regarding for their health benefits and good functional properties. However, most oilseed proteins are incomplete proteins and their functional properties are not promising compared to animal proteins. They are also limited in the food industry due to their off-flavor, allergenic and antinutritional factors. These properties can be improved by protein modification. Therefore, in order to make better use of oilseed proteins, methods for improving their nutrition value, bioactive activity, functional and sensory characteristics, as well as the strategies for reducing their allergenicity were also discussed in this paper. Finally, examples for the application of oilseed proteins in the food industry are presented. Limitations and future perspectives for developing oilseed proteins as food ingredients are also pointed out. This review aims to foster thinking and generate novel ideas for future research. It will also provide novel ideas and broad prospects for the application of oilseeds in the food industry.
Collapse
Affiliation(s)
- Mingxin Zhang
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Ou Wang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Lei Zhao
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Liang Zhao
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
5
|
Di Lena G, Schwarze AK, Lucarini M, Gabrielli P, Aguzzi A, Caproni R, Casini I, Ferrari Nicoli S, Genuttis D, Ondrejíčková P, Hamzaoui M, Malterre C, Kafková V, Rusu A. Application of Rapeseed Meal Protein Isolate as a Supplement to Texture-Modified Food for the Elderly. Foods 2023; 12:foods12061326. [PMID: 36981253 PMCID: PMC10048395 DOI: 10.3390/foods12061326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Rapeseed meal (RSM), a by-product of rapeseed oil extraction, is currently used for low-value purposes. With a biorefinery approach, rapeseed proteins may be extracted and recovered for high-end uses to fully exploit their nutritional and functional properties. This study reports the application of RSM protein isolate, the main output of a biorefining process aimed at recovering high-value molecules from rapeseed meal, as a supplement to texture-modified (TM) food designed for elderly people with mastication and dysphagia problems. The compositional (macronutrients by Official Methods of Analyses, and mineral and trace element profiles using Inductively Coupled Plasma Optical Emission Spectrometry ICP-OES), nutritional and sensory evaluations of TM chicken breast, carrots and bread formulated without and with RSM protein supplementation (5% w/w) are hereby reported. The results show that the texture modification of food combined with rapeseed protein isolate supplementation has a positive impact on the nutritional and sensory profile of food, meeting the special requirements of seniors. TM chicken breast and bread supplemented with RSM protein isolate showed unaltered or even improved sensory properties and a higher nutrient density, with particular regard to proteins (+20-40%) and minerals (+10-16%). Supplemented TM carrots, in spite of the high nutrient density, showed a limited acceptability, due to poor sensory properties that could be overcome with an adjustment to the formulation. This study highlights the potentialities of RSM as a sustainable novel protein source in the food sector. The application of RSM protein proposed here is in line with the major current challenges of food systems such as the responsible management of natural resources, the valorization of agri-food by-products, and healthy nutrition with focus on elderly people.
Collapse
Affiliation(s)
- Gabriella Di Lena
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy
| | | | - Massimo Lucarini
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy
| | - Paolo Gabrielli
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy
| | - Altero Aguzzi
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy
| | - Roberto Caproni
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy
| | - Irene Casini
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy
| | | | | | | | | | | | - Valentína Kafková
- Centrum Výskumu a Vývoja, s. r.o. (Centre for Research and Development), Trnavská Cesta 1033/7, 920 41 Leopoldov, Slovakia
| | - Alexandru Rusu
- Biozoon GmbH, Nansenstraße 8, 27572 Bremerhaven, Germany
| |
Collapse
|
6
|
Wang Y, Rosa-Sibakov N, Edelmann M, Sozer N, Katina K, Coda R. Enhancing the utilization of rapeseed protein ingredients in bread making by tailored lactic acid fermentation. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
7
|
Influence of Wheat-Mesquite ( Prosopis L.) Composite Flour on Dough Rheology and Quality of Bread. ACTA UNIVERSITATIS CIBINIENSIS. SERIES E: FOOD TECHNOLOGY 2022. [DOI: 10.2478/aucft-2022-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Abstract
The purpose of this study was to evaluate the effect of wheat-mesquite composite flour on the rheology of dough and the quality of bread. The farinographic analysis showed a decrease in the development time and stability of the dough with an increase in the mixing tolerance index. The share of mesquite flour increased the value of loss and storage moduli and reduced the dough’s susceptibility to stress. The mesquite flour addition increased the bread volume by about 17% and the number of large pores >5 mm. The brightness of the crumb containing mesquite flour decreased from 75.3 to 58.6 and the proportion of yellow colour increased from 19.9 to 26.4 in relation to the control bread. The bread with mesquite flour had a significantly softer crumb during storage in comparison with wheat bread, indicating a reduction in the staling. These observations were also confirmed by lowering the disintegration enthalpy of the retrograded amylopectin from 3.33 J/g for the control sample to 1.95 J/g for the bread containing 10% of mesquite flour.
Collapse
|
8
|
Korus J, Witczak M, Korus A, Juszczak L. Mesquite (Prosopis L.) as a functional ingredient in gluten-free dough and bread. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
9
|
Yazar G, Demirkesen I. Linear and Non-Linear Rheological Properties of Gluten-Free Dough Systems Probed by Fundamental Methods. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-022-09321-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Gasparre N, van den Berg M, Oosterlinck F, Sein A. High-Moisture Shear Processes: Molecular Changes of Wheat Gluten and Potential Plant-Based Proteins for Its Replacement. Molecules 2022; 27:molecules27185855. [PMID: 36144595 PMCID: PMC9504627 DOI: 10.3390/molecules27185855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Nowadays, a growing offering of plant-based meat alternatives is available in the food market. Technologically, these products are produced through high-moisture shear technology. Process settings and material composition have a significant impact on the physicochemical characteristics of the final products. Throughout the process, the unfolded protein chains may be reduced, or associate in larger structures, creating rearrangement and cross-linking during the cooling stage. Generally, soy and pea proteins are the most used ingredients in plant-based meat analogues. Nevertheless, these proteins have shown poorer results with respect to the typical fibrousness and juiciness found in real meat. To address this limitation, wheat gluten is often incorporated into the formulations. This literature review highlights the key role of wheat gluten in creating products with higher anisotropy. The generation of new disulfide bonds after the addition of wheat gluten is critical to achieve the sought-after fibrous texture, whereas its incompatibility with the other protein phase present in the system is critical for the structuring process. However, allergenicity problems related to wheat gluten require alternatives, hence an evaluation of underutilized plant-based proteins has been carried out to identify those that potentially can imitate wheat gluten behavior during high-moisture shear processing.
Collapse
Affiliation(s)
- Nicola Gasparre
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Food Science Department, Institute of Agrochemistry and Food Technology (IATA-CSIC), C/Agustin Escardino, 7, 46980 Paterna, Spain
- Correspondence:
| | - Marco van den Berg
- Center for Food Innovation DSM Food & Beverage, Alexander Fleminglaan 1, 2613 AX Delft, The Netherlands
| | - Filip Oosterlinck
- Center for Food Innovation DSM Food & Beverage, Alexander Fleminglaan 1, 2613 AX Delft, The Netherlands
| | - Arjen Sein
- Center for Food Innovation DSM Food & Beverage, Alexander Fleminglaan 1, 2613 AX Delft, The Netherlands
| |
Collapse
|
11
|
Gómez M. Gluten-free bakery products: Ingredients and processes. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 99:189-238. [PMID: 35595394 DOI: 10.1016/bs.afnr.2021.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There is an increasing demand for gluten-free products around the world because certain groups of people, which have increased in the last decades, need to eliminate gluten from their diet. A growing number of people consider gluten-free products to be healthier. However, making gluten-free products such as bread is a technological challenge due to the important role of the gluten network in their development. However, other products, such as cakes and cookies usually made with wheat flour, can easily be made with gluten-free starches or flours since gluten does not play an essential role in their production. To replace wheat flour in these elaborations it is necessary to resort to gluten-free starches and/or flours and to gluten substitutes. Additionally, it can be convenient to incorporate other ingredients such as proteins, fibers, sugars or oils, as well as to modify their quantities in wheat flour formulations. Regarding gluten-free flours, it will also be necessary to know the parameters that influence their functionality in order to obtain regular products. These problems have originated a lower availability of gluten-free products which have a worse texture and are less tasty and more expensive than their homologues with gluten. These problems have been partially solved thanks to research on these types of products, their ingredients and their production methods. In recent years, studies about the nutritional improvement of these products have increased. This chapter delves into the main ingredients used in the production of gluten-free products, the processes for making gluten-free breads, cakes and cookies, and the nutritional quality of these products.
Collapse
Affiliation(s)
- Manuel Gómez
- Food Technology Area, College of Agricultural Engineering, University of Valladolid, Palencia, Spain.
| |
Collapse
|
12
|
Boukid F. The realm of plant proteins with focus on their application in developing new bakery products. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 99:101-136. [PMID: 35595392 DOI: 10.1016/bs.afnr.2021.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Plant proteins are spreading due to growing environmental, health and ethical concerns related to animal proteins. Proteins deriving from cereals, oilseeds, and pulses are witnessing a sharp growth showing a wide spectrum of applications from meat and fish analogues to infant formulations. Bakery products are one of the biggest markets of alternative protein applications for functional and nutritional motives. Fortifying bakery products with proteins can secure a better amino-acids profile and a higher protein intake. Conventional plant proteins (i.e., wheat and soy) dominate the bakery industry, but emerging sources (i.e., pea, chickpea, and faba) are also gaining traction. Each protein brings specific functional properties and nutritional value. Therefore, this chapter gives an overview of the main features of plant proteins and discusses their impact on the quality of bakery products.
Collapse
Affiliation(s)
- Fatma Boukid
- Food Safety and Functionality Programme, Food Industry Area, Institute of Agriculture and Food Research and Technology (IRTA), Monells, Catalonia, Spain.
| |
Collapse
|
13
|
Skendi A, Papageorgiou M, Varzakas T. High Protein Substitutes for Gluten in Gluten-Free Bread. Foods 2021; 10:1997. [PMID: 34574106 PMCID: PMC8468076 DOI: 10.3390/foods10091997] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/19/2021] [Accepted: 08/21/2021] [Indexed: 01/08/2023] Open
Abstract
Gluten-free products have come into the market in order to alleviate health problems such as celiac disease. In this review, recent advances in gluten-free bread are described along with plant-based gluten-free proteins. A comparison with animal-based gluten-free proteins is made reporting on different high protein sources of animal origin. Sea microorganisms- and insect-based proteins are also mentioned, and the optimization of the structure of gluten-free bread with added high protein sources is highlighted along with protein digestibility issues. The latter is an issue for consideration that can be manipulated by a careful design of the mixture in terms of phenolic compounds, soluble carbohydrates and fibres, but also the baking process itself. Additionally, the presence of enzymes and different hydrocolloids are key factors controlling quality features of the final product.
Collapse
Affiliation(s)
- Adriana Skendi
- Department of Food Science and Technology, International Hellenic University, P.O. Box 141, 57400 Thessaloniki, Greece;
| | - Maria Papageorgiou
- Department of Food Science and Technology, International Hellenic University, P.O. Box 141, 57400 Thessaloniki, Greece;
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece;
| |
Collapse
|