1
|
Clemens M, Faralli M, Lagreze J, Bontempo L, Piazza S, Varotto C, Malnoy M, Oechel W, Rizzoli A, Dalla Costa L. VvEPFL9-1 Knock-Out via CRISPR/Cas9 Reduces Stomatal Density in Grapevine. FRONTIERS IN PLANT SCIENCE 2022; 13:878001. [PMID: 35656017 PMCID: PMC9152544 DOI: 10.3389/fpls.2022.878001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/11/2022] [Indexed: 05/03/2023]
Abstract
Epidermal Patterning Factor Like 9 (EPFL9), also known as STOMAGEN, is a cysteine-rich peptide that induces stomata formation in vascular plants, acting antagonistically to other epidermal patterning factors (EPF1, EPF2). In grapevine there are two EPFL9 genes, EPFL9-1 and EPFL9-2 sharing 82% identity at protein level in the mature functional C-terminal domain. In this study, CRISPR/Cas9 system was applied to functionally characterize VvEPFL9-1 in 'Sugraone', a highly transformable genotype. A set of plants, regenerated after gene transfer in embryogenic calli via Agrobacterium tumefaciens, were selected for evaluation. For many lines, the editing profile in the target site displayed a range of mutations mainly causing frameshift in the coding sequence or affecting the second cysteine residue. The analysis of stomata density revealed that in edited plants the number of stomata was significantly reduced compared to control, demonstrating for the first time the role of EPFL9 in a perennial fruit crop. Three edited lines were then assessed for growth, photosynthesis, stomatal conductance, and water use efficiency in experiments carried out at different environmental conditions. Intrinsic water-use efficiency was improved in edited lines compared to control, indicating possible advantages in reducing stomatal density under future environmental drier scenarios. Our results show the potential of manipulating stomatal density for optimizing grapevine adaptation under changing climate conditions.
Collapse
Affiliation(s)
- Molly Clemens
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
- Global Change Research Group, San Diego State University, San Diego, CA, United States
- Department of Viticulture and Enology, University of California Davis, Davis, CA, United States
| | - Michele Faralli
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
- *Correspondence: Michele Faralli,
| | - Jorge Lagreze
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Luana Bontempo
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Stefano Piazza
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Claudio Varotto
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Mickael Malnoy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Walter Oechel
- Global Change Research Group, San Diego State University, San Diego, CA, United States
- Department of Geography, University of Exeter, Exeter, United Kingdom
| | - Annapaola Rizzoli
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Lorenza Dalla Costa
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
- Lorenza Dalla Costa,
| |
Collapse
|