1
|
Hofmann MH, Gebhardt IC. Evolution of the visual system in ray-finned fishes. Vis Neurosci 2023; 40:E005. [PMID: 38116689 PMCID: PMC11016354 DOI: 10.1017/s0952523823000020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 12/21/2023]
Abstract
The vertebrate eye allows to capture an enormous amount of detail about the surrounding world which can only be exploited with sophisticated central information processing. Furthermore, vision is an active process due to head and eye movements that enables the animal to change the gaze and actively select objects to investigate in detail. The entire system requires a coordinated coevolution of its parts to work properly. Ray-finned fishes offer a unique opportunity to study the evolution of the visual system due to the high diversity in all of its parts. Here, we are bringing together information on retinal specializations (fovea), central visual centers (brain morphology studies), and eye movements in a large number of ray-finned fishes in a cladistic framework. The nucleus glomerulosus-inferior lobe system is well developed only in Acanthopterygii. A fovea, independent eye movements, and an enlargement of the nucleus glomerulosus-inferior lobe system coevolved at least five times independently within Acanthopterygii. This suggests that the nucleus glomerulosus-inferior lobe system is involved in advanced object recognition which is especially well developed in association with a fovea and independent eye movements. None of the non-Acanthopterygii have a fovea (except for some deep sea fish) or independent eye movements and they also lack important parts of the glomerulosus-inferior lobe system. This suggests that structures for advanced visual object recognition evolved within ray-finned fishes independent of the ones in tetrapods and non-ray-finned fishes as a result of a coevolution of retinal, central, and oculomotor structures.
Collapse
Affiliation(s)
- Michael H. Hofmann
- Department of Comparative Neuroanatomy, Institute of Zoology, University of Bonn, Bonn, Germany
| | - Isabelle C. Gebhardt
- Department of Comparative Neuroanatomy, Institute of Zoology, University of Bonn, Bonn, Germany
| |
Collapse
|
2
|
Helmbrecht TO, dal Maschio M, Donovan JC, Koutsouli S, Baier H. Topography of a Visuomotor Transformation. Neuron 2018; 100:1429-1445.e4. [DOI: 10.1016/j.neuron.2018.10.021] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/31/2018] [Accepted: 10/09/2018] [Indexed: 01/07/2023]
|
3
|
Bianco IH, Engert F. Visuomotor transformations underlying hunting behavior in zebrafish. Curr Biol 2015; 25:831-46. [PMID: 25754638 PMCID: PMC4386024 DOI: 10.1016/j.cub.2015.01.042] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/18/2015] [Accepted: 01/19/2015] [Indexed: 11/28/2022]
Abstract
Visuomotor circuits filter visual information and determine whether or not to engage downstream motor modules to produce behavioral outputs. However, the circuit mechanisms that mediate and link perception of salient stimuli to execution of an adaptive response are poorly understood. We combined a virtual hunting assay for tethered larval zebrafish with two-photon functional calcium imaging to simultaneously monitor neuronal activity in the optic tectum during naturalistic behavior. Hunting responses showed mixed selectivity for combinations of visual features, specifically stimulus size, speed, and contrast polarity. We identified a subset of tectal neurons with similar highly selective tuning, which show non-linear mixed selectivity for visual features and are likely to mediate the perceptual recognition of prey. By comparing neural dynamics in the optic tectum during response versus non-response trials, we discovered premotor population activity that specifically preceded initiation of hunting behavior and exhibited anatomical localization that correlated with motor variables. In summary, the optic tectum contains non-linear mixed selectivity neurons that are likely to mediate reliable detection of ethologically relevant sensory stimuli. Recruitment of small tectal assemblies appears to link perception to action by providing the premotor commands that release hunting responses. These findings allow us to propose a model circuit for the visuomotor transformations underlying a natural behavior. Zebrafish hunting responses are triggered by conjunctions of visual features Tectal neurons show non-linear mixed selectivity for prey-like visual stimuli Tectal assemblies show premotor activity specifically preceding hunting responses
Collapse
Affiliation(s)
- Isaac H Bianco
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| | - Florian Engert
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
4
|
Key B. Fish do not feel pain and its implications for understanding phenomenal consciousness. BIOLOGY & PHILOSOPHY 2014; 30:149-165. [PMID: 25798021 PMCID: PMC4356734 DOI: 10.1007/s10539-014-9469-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 12/06/2014] [Indexed: 05/28/2023]
Abstract
Phenomenal consciousness or the subjective experience of feeling sensory stimuli is fundamental to human existence. Because of the ubiquity of their subjective experiences, humans seem to readily accept the anthropomorphic extension of these mental states to other animals. Humans will typically extrapolate feelings of pain to animals if they respond physiologically and behaviourally to noxious stimuli. The alternative view that fish instead respond to noxious stimuli reflexly and with a limited behavioural repertoire is defended within the context of our current understanding of the neuroanatomy and neurophysiology of mental states. Consequently, a set of fundamental properties of neural tissue necessary for feeling pain or experiencing affective states in vertebrates is proposed. While mammals and birds possess the prerequisite neural architecture for phenomenal consciousness, it is concluded that fish lack these essential characteristics and hence do not feel pain.
Collapse
Affiliation(s)
- Brian Key
- School of Biomedical Sciences, University of Queensland, Brisbane, 4072 Australia
| |
Collapse
|
5
|
Ben-Simon A, Ben-Shahar O, Vasserman G, Segev R. Predictive saccade in the absence of smooth pursuit: interception of moving targets in the archer fish. ACTA ACUST UNITED AC 2012; 215:4248-54. [PMID: 22972882 DOI: 10.1242/jeb.076018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Interception of fast-moving targets is a demanding task many animals solve. To handle it successfully, mammals employ both saccadic and smooth pursuit eye movements in order to confine the target to their area centralis. But how can non-mammalian vertebrates, which lack smooth pursuit, intercept moving targets? We studied this question by exploring eye movement strategies employed by archer fish, an animal that possesses an area centralis, lacks smooth pursuit eye movements, but can intercept moving targets by shooting jets of water at them. We tracked the gaze direction of fish during interception of moving targets and found that they employ saccadic eye movements based on prediction of target position when it is hit. The fish fixates on the target's initial position for ∼0.2 s from the onset of its motion, a time period used to predict whether a shot can be made before the projection of the target exits the area centralis. If the prediction indicates otherwise, the fish performs a saccade that overshoots the center of gaze beyond the present target projection on the retina, such that after the saccade the moving target remains inside the area centralis long enough to prepare and perform a shot. These results add to the growing body of knowledge on biological target tracking and may shed light on the mechanism underlying this behavior in other animals with no neural system for the generation of smooth pursuit eye movements.
Collapse
Affiliation(s)
- Avi Ben-Simon
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | | | | | |
Collapse
|
6
|
Tao L, Lauderdale JD, Sornborger AT. Mapping Functional Connectivity between Neuronal Ensembles with Larval Zebrafish Transgenic for a Ratiometric Calcium Indicator. Front Neural Circuits 2011; 5:2. [PMID: 21373259 PMCID: PMC3044448 DOI: 10.3389/fncir.2011.00002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 01/11/2011] [Indexed: 12/23/2022] Open
Abstract
The ability to map functional connectivity is necessary for the study of the flow of activity in neuronal circuits. Optical imaging of calcium indicators, including FRET-based genetically encoded indicators and extrinsic dyes, is an important adjunct to electrophysiology and is widely used to visualize neuronal activity. However, techniques for mapping functional connectivities with calcium imaging data have been lacking. We present a procedure to compute reduced functional couplings between neuronal ensembles undergoing seizure activity from ratiometric calcium imaging data in three steps: (1) calculation of calcium concentrations and neuronal firing rates from ratiometric data; (2) identification of putative neuronal populations from spatio-temporal time-series of neural bursting activity; and then, (3) derivation of reduced connectivity matrices that represent neuronal population interactions. We apply our method to the larval zebrafish central nervous system undergoing chemoconvulsant-induced seizures. These seizures generate propagating, central nervous system-wide neural activity from which population connectivities may be calculated. This automatic functional connectivity mapping procedure provides a practical and user-independent means for summarizing the flow of activity between neuronal ensembles.
Collapse
Affiliation(s)
- Louis Tao
- Center for Bioinformatics, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University Beijing, China
| | | | | |
Collapse
|
7
|
Horowitz SS, Simmons AM. Development of tectal connectivity across metamorphosis in the bullfrog (Rana catesbeiana). BRAIN, BEHAVIOR AND EVOLUTION 2011; 76:226-47. [PMID: 21266803 DOI: 10.1159/000322550] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 12/28/2009] [Indexed: 11/19/2022]
Abstract
In the bullfrog (Rana catesbeiana), the process of metamorphosis culminates in the appearance of new visual and visuomotor behaviors reflective of the emergence of binocular vision and visually-guided prey capture behaviors as the animal transitions to life on land. Using several different neuroanatomical tracers, we examined the substrates that may underlie these behavioral changes by tracing the afferent and efferent connectivity of the midbrain optic tectum across metamorphic development. Intratectal, tectotoral, tectotegmental, tectobulbar, and tecto-thalamic tracts exhibit similar trajectories of neurobiotin fiber label across the developmental span from early larval tadpoles to adults. Developmental variability was apparent primarily in intensity and distribution of cell and puncta label in target nuclei. Combined injections of cholera toxin subunit β and Phaseolus vulgaris leucoagglutinin consistently label cell bodies, puncta, or fiber segments bilaterally in midbrain targets including the pretectal gray, laminar nucleus of the torus semicircularis, and the nucleus of the medial longitudinal fasciculus. Developmentally stable label was observed bilaterally in medullary targets including the medial vestibular nucleus, lateral vestibular nucleus, and reticular gray, and in forebrain targets including the posterior and ventromedial nuclei of the thalamus. The nucleus isthmi, cerebellum, lateral line nuclei, medial septum, ventral striatum, and medial pallium show more developmentally variable patterns of connectivity. Our results suggest that even during larval development, the optic tectum contains substrates for integration of visual with auditory, vestibular, and somatosensory cues, as well as for guidance of motivated behaviors.
Collapse
Affiliation(s)
- Seth S Horowitz
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, Providence, RI, USA
| | | |
Collapse
|
8
|
Nevin LM, Robles E, Baier H, Scott EK. Focusing on optic tectum circuitry through the lens of genetics. BMC Biol 2010; 8:126. [PMID: 20920150 PMCID: PMC2949621 DOI: 10.1186/1741-7007-8-126] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 09/24/2010] [Indexed: 11/10/2022] Open
Abstract
The visual pathway is tasked with processing incoming signals from the retina and converting this information into adaptive behavior. Recent studies of the larval zebrafish tectum have begun to clarify how the 'micro-circuitry' of this highly organized midbrain structure filters visual input, which arrives in the superficial layers and directs motor output through efferent projections from its deep layers. The new emphasis has been on the specific function of neuronal cell types, which can now be reproducibly labeled, imaged and manipulated using genetic and optical techniques. Here, we discuss recent advances and emerging experimental approaches for studying tectal circuits as models for visual processing and sensorimotor transformation by the vertebrate brain.
Collapse
Affiliation(s)
- Linda M Nevin
- Department of Physiology, University of California, San Francisco, 1550 4th Street, San Francisco, CA 94158-23241, USA.
| | | | | | | |
Collapse
|
9
|
Scott EK, Baier H. The cellular architecture of the larval zebrafish tectum, as revealed by gal4 enhancer trap lines. Front Neural Circuits 2009; 3:13. [PMID: 19862330 PMCID: PMC2763897 DOI: 10.3389/neuro.04.013.2009] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Accepted: 09/11/2009] [Indexed: 11/18/2022] Open
Abstract
We have carried out a Gal4 enhancer trap screen in zebrafish, and have generated 184 stable transgenic lines with interesting expression patterns throughout the nervous system. Of these, three display clear expression in the tectum, each with a distinguishable and stereotyped distribution of Gal4 expressing cells. Detailed morphological analysis of single cells, using a genetic “Golgi-like” labelling method, revealed four common cell types (superficial, periventricular, shallow periventricular, and radial glial), along with a range of other less common neurons. The shallow periventricular (PV) and a subset of the PV neurons are tectal efferent neurons that target various parts of the reticular formation. We find that it is specifically PV neurons with dendrites in the deep tectal neuropil that target the reticular formation. This indicates that these neurons receive the tectum's highly processed visual information (which is fed from the superficial retinorecipient layers), and relay it to premotor regions. Our results show that the larval tectum, both broadly and at the single cell level, strongly resembles a miniature version of its adult counterpart, and that it has all of the necessary anatomical characteristics to inform motor responses based on sensory input. We also demonstrate that mosaic expression of GFP in Gal4 enhancer trap lines can be used to describe the types and abundance of cells in an expression pattern, including the architectures of individual neurons. Such detailed anatomical descriptions will be an important part of future efforts to describe the functions of discrete tectal circuits in the generation of behavior.
Collapse
Affiliation(s)
- Ethan K Scott
- Department of Physiology, University of California San Francisco, CA, USA
| | | |
Collapse
|
10
|
The feedback circuit connecting the central mesencephalic reticular formation and the superior colliculus in the macaque monkey: tectal connections. Exp Brain Res 2008; 189:485-96. [PMID: 18553075 DOI: 10.1007/s00221-008-1444-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Accepted: 05/25/2008] [Indexed: 12/18/2022]
Abstract
The connectional and physiological characteristics of the central mesencephalic reticular formation (cMRF) indicate that it participates in gaze control. The cMRF receives projections from the ipsilateral superior colliculus (SC) via collaterals of predorsal bundle axons. These collaterals target cMRF neurons, which in turn project back upon the SC. In the present study, we examined the pattern of connections made by the cMRF reticulotectal projection by injecting the bidirectional neuroanatomical tracer, biotinylated dextran amine (BDA), into the cMRF of macaque monkeys. Anterogradely labeled reticulotectal terminals were found bilaterally in the SC, with an ipsilateral predominance, and were concentrated in the intermediate gray layer (SGI). BDA also retrogradely labeled SC neurons projecting to the cMRF. These labeled tectoreticular cells were located mainly in SGI. Injection site specific differences in the SC labeling pattern were evident, suggesting the lateral cMRF is more heavily connected to the upper sublamina of SGI, whereas the medial cMRF is more heavily connected with the lower sublamina. In view of the known downstream connections of the cMRF and these SC sublaminae, this organization intimates that the cMRF may contain subdivisions specialized to modulate the eye and the head components of gaze changes. In addition, reticulotectal terminals were observed to have close associations with retrogradely labeled tectoreticular cells in the ipsilateral SC, indicating possible synaptic contacts. Thus, the cMRF's reciprocal connections with the SC suggest this structure plays a role in defining the gaze-related bursting behavior of collicular output neurons.
Collapse
|
11
|
Sato T, Hamaoka T, Aizawa H, Hosoya T, Okamoto H. Genetic single-cell mosaic analysis implicates ephrinB2 reverse signaling in projections from the posterior tectum to the hindbrain in zebrafish. J Neurosci 2007; 27:5271-9. [PMID: 17507550 PMCID: PMC6672335 DOI: 10.1523/jneurosci.0883-07.2007] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The optic tectum is a visual center in vertebrates. It receives topographically ordered visual inputs from the retina in the superficial layers and then sends motor outputs from the deeper layers to the premotor reticulospinal system in the hindbrain. Although the topographic patterns of the retinotectal projection are well known, it is not yet well understood how tectal efferents in the tectobulbar tract project to the hindbrain. The retinotectal and the tectobulbar projections were visualized in a zebrafish stable transgenic line Tg(brn3a-hsp70:GFP). Using a single-neuron labeling system in combination with the cre/loxP and Gal4/UAS systems, we showed that the tectal neurons that projected to rhombomeres 2 and 6 were distributed with distinctive patterns along the anterior-posterior axis. Furthermore, we found that ephrinB2a was critically involved in increasing the probability of neurons projecting to rhombomere 2 through a reverse signaling mechanism. These results may provide a neuroanatomical and molecular basis for the motor command map in the tectum.
Collapse
Affiliation(s)
- Tomomi Sato
- Laboratory for Developmental Gene Regulation and
| | | | | | - Toshihiko Hosoya
- Hosoya Research Unit, Brain Science Institute, RIKEN, Wako, Saitama 351-0198, Japan
| | | |
Collapse
|
12
|
de Arriba MDC, Pombal MA. Afferent Connections of the Optic Tectum in Lampreys: An Experimental Study. BRAIN, BEHAVIOR AND EVOLUTION 2007; 69:37-68. [PMID: 16926536 DOI: 10.1159/000095272] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Accepted: 03/27/2006] [Indexed: 11/19/2022]
Abstract
Tectal afferents were studied in adult lampreys of three species (Ichthyomyzon unicuspis, Lampetra fluviatilis, and Petromyzon marinus) following unilateral BDA injections into the optic tectum (OT). In the secondary prosencephalon, neurons projecting to the OT were observed in the pallium, the subhipoccampal lobe, the striatum, the preoptic area and the hypothalamus. Following tectal injections, backfilled diencephalic cells were found bilaterally in: prethalamic eminence, ventral geniculate nucleus, periventricular prethalamic nucleus, periventricular pretectal nucleus, precommissural nucleus, magnocellular and parvocellular nuclei of the posterior commissure and pretectal nucleus; and ipsilaterally in: nucleus of Bellonci, periventricular thalamic nucleus, nucleus of the tuberculum posterior, and the subpretectal tegmentum, as well as in the pineal organ. At midbrain levels, retrogradely labeled cells were seen in the ipsilateral torus semicircularis, the contralateral OT, and bilaterally in the mesencephalic reticular formation and inside the limits of the retinopetal nuclei. In the hindbrain, tectal projecting cells were also bilaterally labeled in the dorsal and lateral isthmic nuclei, the octavolateral area, the sensory nucleus of the descending trigeminal tract, the dorsal column nucleus and the reticular formation. The rostral spinal cord also exhibited a few labeled cells. These results demonstrate a complex pattern of connections in the lamprey OT, most of which have been reported in other vertebrates. Hence, the lamprey OT receives a large number of nonvisual afferents from all major brain areas, and so is involved in information processing from different somatic sensory modalities.
Collapse
Affiliation(s)
- María del Carmen de Arriba
- Neurolam Group, Department of Functional Biology and Health Sciences, Faculty of Biology, University of Vigo, Vigo, Spain
| | | |
Collapse
|
13
|
Luque MA, Pérez-Pérez MP, Herrero L, Waitzman DM, Torres B. Eye movements evoked by electrical microstimulation of the mesencephalic reticular formation in goldfish. Neuroscience 2006; 137:1051-73. [PMID: 16298075 DOI: 10.1016/j.neuroscience.2005.09.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Revised: 09/06/2005] [Accepted: 09/24/2005] [Indexed: 11/18/2022]
Abstract
Anatomical studies in goldfish show that the tectofugal axons provide a large number of boutons within the mesencephalic reticular formation. Electrical stimulation, reversible inactivation and cell recording in the primate central mesencephalic reticular formation have suggested that it participates in the control of rapid eye movements (saccades). Moreover, the role of this tecto-recipient area in the generation of saccadic eye movements in fish is unknown. In this study we show that the electrical microstimulation of the mesencephalic reticular formation of goldfish evoked short latency saccadic eye movements in any direction (contraversive or ipsiversive, upward or downward). Movements of the eyes were usually disjunctive. Based on the location of the sites from which eye movements were evoked and the preferred saccade direction, eye movements were divided into different groups: pure vertical saccades were mainly elicited from the rostral mesencephalic reticular formation, while oblique and pure horizontal were largely evoked from middle and caudal mesencephalic reticular formation zones. The direction and amplitude of pure vertical and horizontal saccades were unaffected by initial eye position. However the amplitude, but not the direction of most oblique saccades was systematically modified by initial eye position. At the same time, the amplitude of elicited saccades did not vary in any consistent manner along either the anteroposterior, dorsoventral or mediolateral axes (i.e. there was no topographic organization of the mesencephalic reticular formation with respect to amplitude). In addition to these groups of movements, we found convergent and goal-directed saccades evoked primarily from the anterior and posterior mesencephalic reticular formation, respectively. Finally, the metric and kinetic characteristics of saccades could be manipulated by changes in the stimulation parameters. We conclude that the mesencephalic reticular formation in goldfish shares physiological functions that correspond closely with those found in mammals.
Collapse
Affiliation(s)
- M A Luque
- Department of Physiology and Zoology, Fac. Biología, University of Sevilla, Avda. Reina Mercedes, 6, 41012 Sevilla, Spain
| | | | | | | | | |
Collapse
|
14
|
Luque MA, Perez-Perez MP, Herrero L, Torres B. Connections of eye-saccade-related areas within mesencephalic reticular formation with the optic tectum in goldfish. J Comp Neurol 2006; 500:6-19. [PMID: 17099899 DOI: 10.1002/cne.21104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Physiological studies demonstrate that separate sites within the mesencephalic reticular formation (MRF) can evoke eye saccades with different preferred directions. Furthermore, anatomical research suggests that a tectoreticulotectal circuit organized in accordance with the tectal eye movement map is present. However, whether the reticulotectal projection shifts with the gaze map present in the MRF is unknown. We explored this question in goldfish, by injecting biotin dextran amine within MRF sites that evoked upward, downward, oblique, and horizontal eye saccades. Then, we analyzed the labeling in the optic tectum. The main findings can be summarized as follows. 1) The MRF and the optic tectum were connected by separate axons of the tectobulbar tract. 2) The MRF was reciprocally connected mainly with the ipsilateral tectal lobe, but also with the contralateral one. 3) The MRF received projections chiefly from neurons located within intermediate and deep tectal layers. In addition, the MRF projections terminated primarily within the intermediate tectal layer. 4) The distribution of labeled neurons in the tectum shifted with the different MRF sites in a manner consistent with the tectal motor map. The area containing these cells was targeted by a high-density reticulotectal projection. In addition to this high-density topographic projection, there was a low-density one spread throughout the tectum. 5) Occasionally, boutons were observed adjacent to tectal labeled neurons. We conclude that the organization of the reticulotectal circuit is consistent with the functional topography of the MRF and that the MRF participates in a tectoreticulotectal feedback circuit.
Collapse
Affiliation(s)
- Maria A Luque
- Lab. Neurobiologia de Vertebrados, Dept. Fisiologia y Zoologia, Universidad de Sevilla, 41012 Sevilla, Spain
| | | | | | | |
Collapse
|
15
|
Gahtan E, Tanger P, Baier H. Visual prey capture in larval zebrafish is controlled by identified reticulospinal neurons downstream of the tectum. J Neurosci 2005; 25:9294-303. [PMID: 16207889 PMCID: PMC6725764 DOI: 10.1523/jneurosci.2678-05.2005] [Citation(s) in RCA: 239] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Many vertebrates are efficient hunters and recognize their prey by innate neural mechanisms. During prey capture, the internal representation of the prey's location must be constantly updated and made available to premotor neurons that convey the information to spinal motor circuits. We studied the neural substrate of this specialized visuomotor system using high-speed video recordings of larval zebrafish and laser ablations of candidate brain structures. Seven-day-old zebrafish oriented toward, chased, and consumed paramecia with high accuracy. Lesions of the retinotectal neuropil primarily abolished orienting movements toward the prey. Wild-type fish tested in darkness, as well as blind mutants, were impaired similarly to tectum-ablated animals, suggesting that prey capture is mainly visually mediated. To trace the pathway further, we examined the role of two pairs of identified reticulospinal neurons, MeLc and MeLr, located in the nucleus of the medial longitudinal fasciculus of the tegmentum. These two neurons extend dendrites into the ipsilateral tectum and project axons into the spinal cord. Ablating MeLc and MeLr bilaterally impaired prey capture but spared several other behaviors. Ablating different sets of reticulospinal neurons did not impair prey capture, suggesting a selective function of MeLr and MeLc in this behavior. Ablating MeLc and MeLr neurons unilaterally in conjunction with the contralateral tectum also mostly abolished prey capture, but ablating them together with the ipsilateral tectum had a much smaller effect. These results suggest that MeLc and MeLr function in series with the tectum, as part of a circuit that coordinates prey capture movements.
Collapse
Affiliation(s)
- Ethan Gahtan
- Department of Psychology, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | | | | |
Collapse
|
16
|
Landwehr S, Dicke U. Distribution of GABA, glycine, and glutamate in neurons of the medulla oblongata and their projections to the midbrain tectum in plethodontid salamanders. J Comp Neurol 2005; 490:145-62. [PMID: 16052495 DOI: 10.1002/cne.20646] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the medulla oblongata of plethodontid salamanders, GABA-, glycine-, and glutamate-like immunoreactivity (ir) of neurons was studied. Combined tracing and immunohistochemical experiments were performed to analyze the transmitter content of medullary nuclei with reciprocal connections with the tectum mesencephali. The distribution of transmitters differed significantly between rostral and caudal medulla; dual or triple localization of transmitters was present in somata throughout the rostrocaudal extent of the medulla. Regarding the rostral medulla, the largest number of GABA- and gly-ir neurons was found in the medial zone. Neurons of the nucleus reticularis medius (NRM) retrogradely labeled by tracer application into the tectum revealed predominantly gly-ir, often colocalized with glu-ir. The NRM appears to be homologous to the mammalian gigantocellular reticular nucleus, and its glycinergic projection is most likely part of a negative feedback loop between medulla and tectum. Neurons of the dorsal and vestibular nucleus projecting to the tectum were glu-ir and often revealed additional GABA- and/or gly-ir in the vestibular nucleus. Regarding the caudal medulla, the highest density of GABA- and gly-ir cells was found in the lateral zone. Differences in the neurochemistry of the rostral versus caudal medulla appear to result from the transmitter content of projection nuclei in the rostral medulla and support the idea that the rostral medulla is involved in tecto-reticular interaction. Our results likewise underline the role of the NRM in visual object selection and orientation as suggested by behavioral studies and recordings from tectal neurons.
Collapse
Affiliation(s)
- Sandra Landwehr
- Brain Research Institute, University of Bremen, D-28334 Bremen, Germany
| | | |
Collapse
|
17
|
Torres B, Luque MA, Pérez-Pérez MP, Herrero L. Visual orienting response in goldfish: a multidisciplinary study. Brain Res Bull 2005; 66:376-80. [PMID: 16144618 DOI: 10.1016/j.brainresbull.2005.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Indexed: 11/30/2022]
Abstract
The neural basis underlying the orienting response has been thoroughly studied in frontal-eyed mammals. However, in non-mammalian species, including fish, it remains almost unknown. Therefore, we studied the contribution of the optic tectum and the mesencephalic reticular formation to the performance of the orienting response in goldfish, using behavioural, physiological, and anatomical tracer techniques. The appearance of a visual stimulus (a pellet of food) in the environment of a goldfish evoked a turn of the body to reorient the line of sight. Left-tectal lobe ablation abolished the orienting turn response towards the contralateral hemifield. Electrical microstimulation of the optic tectum suggested the presence of a motor map, which is in correspondence with the overlying visual representation, as previously reported in other vertebrates. The tracer biotin-dextran amine was injected into different functionally identified tectal zones. The results showed that rostral and caudal poles of the mesencephalic reticular formation receive outflow mainly from the rostral and caudal tectal poles, respectively. This suggests that the tectal wiring with downstream structures is site-dependent. Furthermore, the electrical activation of rostral and caudal mesencephalic reticular formation revealed a different contribution to vertical and horizontal orienting eye movements. We conclude that the basic neural system coding the orienting response appears early in phylogenesis, although some specific characteristics are selected by adaptive pressure.
Collapse
Affiliation(s)
- B Torres
- Laboratorio de Neurobiología de Vertebrados, Departamento de Fisiología y Zoología, Facultad de Biología, Universidad de Sevilla, Spain.
| | | | | | | |
Collapse
|
18
|
Angeles Luque M, Pilar Pérez-Pérez M, Herrero L, Torres B. Involvement of the optic tectum and mesencephalic reticular formation in the generation of saccadic eye movements in goldfish. ACTA ACUST UNITED AC 2004; 49:388-97. [PMID: 16111565 DOI: 10.1016/j.brainresrev.2004.10.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Revised: 09/21/2004] [Accepted: 10/03/2004] [Indexed: 11/26/2022]
Abstract
The circuitry and physiological properties underlying saccadic eye movement generation have been studied mainly in monkeys and cats. By contrast, current knowledge in nonmammalian species is rather scarce. We review here some of our recent findings about the involvement of the optic tectum and mesencephalic reticular formation in the generation of saccades in goldfish. Electrical microstimulation of the optic tectum evokes contraversive saccadic eye movements. In goldfish, as in mammals, the amplitude and direction of saccades are encoded in a spatial topographical map. In addition, there are some areas that have evolved, such as the extreme anteromedial tectal zone, whose activation yields eye convergence. Injections of the bidirectional tracer biotin dextran amine within functionally identified sites of the tectum provide reciprocal, site-dependent connectivity with different downstream structures. Of these structures, the major tectofugal target is the mesencephalic reticular formation. In goldfish, as in mammals, the mesencephalic reticular formation and optic tectum establish reciprocal connections at regional and neuronal levels which support the presence of feedback circuits. Electrical microstimulation demonstrates that the mesencephalic reticular formation can be functionally parceled-the rostral part is linked to vertical saccades, while the caudal part is related with horizontal ones. Finally, these zones are also differently connected to the optic tectum. From these data, we conclude that the involvement of the optic tectum and mesencephalic reticular formation in eye movement generation in goldfish is similar to that reported in cats and monkeys.
Collapse
Affiliation(s)
- M Angeles Luque
- Lab. Neurobiología de Vertebrados, Dept. Fisiología y Zoología, Fac. Biologia, Avda. Reina Mercedes, 6, 41012, Univ Sevilla, Spain
| | | | | | | |
Collapse
|