1
|
Sun M, Lewis K, Choi JH, Zhang F, Qu F, Li L. The Reduced Adaptability of H-Reflex Parameters to Postural Change With Deficiency of Foot Plantar Sensitivity. Front Physiol 2022; 13:890414. [PMID: 35846020 PMCID: PMC9277460 DOI: 10.3389/fphys.2022.890414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/20/2022] [Indexed: 11/18/2022] Open
Abstract
Purpose: The project was to examine the influence of peripheral neuropathy (PN) severity on the relationship between Hoffmann-reflex (H-reflex) and postures. Methods: A total of 34 participants were recruited. H-reflex (H/M ratio and H-index) during prone, standing, and the heel-contact phase of walking was tested, along with foot sole sensitivity. Results: The participants were divided into three groups based on the severity of the foot sole sensitivity deficit: control, less (LA), and more (MA) affected with both feet 5.07 monofilament test scores ranging 10, 0–5, and 6–9, respectively. A significant group by the posture interaction was observed in the H/M ratio (F3.0, 41.9 = 2.904, p = 0.046, ηp2 = 0.172). In the control group, the H/M ratio of prone (22 ± 7%) was greater than that of the standing (13 ± 3%, p = 0.013) and heel-contact phase (10 ± 2%, p = 0.004). In the MA group, the H/M ratio of standing (13 ± 3%) was greater than that of the heel-contact phase (8 ± 2%, p = 0.011). The H-index was significantly different among groups (F2,28 = 5.711, p = 0.008, and ηp2= 0.290). Post hoc analysis showed that the H-index of the control group (80.6 ± 11.3) was greater than that of the LA (69.8 ± 12.1, p = 0.021) and MA groups (62.0 ± 10.6, p = 0.003). Conclusion: In a non-PN population, the plantar sensory input plays an important role in maintaining standing postural control, while as for the PN population with foot sole sensitivity deficiency, type Ⅰ afferent fibers reflex loop (H-reflex) contributes more to the standing postural control. The H-index parameter is an excellent method to recognize the people with and without PN but not to distinguish the severity of PN with impaired foot sole sensitivity.
Collapse
Affiliation(s)
- Mengzi Sun
- Biomechanics Laboratory, Beijing Sport University, Beijing, China
- Department of Health Sciences and Kinesiology, Georgia Southern University, Statesboro, GA, United States
| | - Kelsey Lewis
- Department of Health Sciences and Kinesiology, Georgia Southern University, Statesboro, GA, United States
| | - Jung Hun Choi
- Department of Mechanical Engineering, Georgia Southern University, Statesboro, GA, United States
| | - Fangtong Zhang
- Biomechanics Laboratory, Beijing Sport University, Beijing, China
| | - Feng Qu
- Biomechanics Laboratory, Beijing Sport University, Beijing, China
| | - Li Li
- Department of Health Sciences and Kinesiology, Georgia Southern University, Statesboro, GA, United States
- *Correspondence: Li Li,
| |
Collapse
|
2
|
Modulation of soleus stretch reflexes during walking in people with chronic incomplete spinal cord injury. Exp Brain Res 2019; 237:2461-2479. [PMID: 31309252 PMCID: PMC6751142 DOI: 10.1007/s00221-019-05603-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/08/2019] [Indexed: 12/28/2022]
Abstract
In people with spasticity due to chronic incomplete spinal cord injury (SCI), it has been presumed that the abnormal stretch reflex activity impairs gait. However, locomotor stretch reflexes across all phases of walking have not been investigated in people with SCI. Thus, to understand modulation of stretch reflex excitability during spastic gait, we investigated soleus stretch reflexes across the entire gait cycle in nine neurologically normal participants and nine participants with spasticity due to chronic incomplete SCI (2.5–11 year post-injury). While the participant walked on the treadmill at his/her preferred speed, unexpected ankle dorsiflexion perturbations (6° at 250°/s) were imposed every 4–6 steps. The soleus H-reflex was also examined. In participants without SCI, spinal short-latency “M1”, spinal medium latency “M2”, and long-latency “M3” were clearly modulated throughout the step cycle; the responses were largest in the mid-stance and almost completely suppressed during the stance-swing transition and swing phases. In participants with SCI, M1 and M2 were abnormally large in the mid–late-swing phase, while M3 modulation was similar to that in participants without SCI. The H-reflex was also large in the mid–late-swing phase. Elicitation of H-reflex and stretch reflexes in the late swing often triggered clonus and affected the soleus activity in the following stance. In individuals without SCI, moderate positive correlation was found between H-reflex and stretch reflex sizes across the step cycle, whereas in participants with SCI, such correlation was weak to non-existing, suggesting that H-reflex investigation would not substitute for stretch reflex investigation in individuals after SCI.
Collapse
|
3
|
Thompson AK, Wolpaw JR. H-reflex conditioning during locomotion in people with spinal cord injury. J Physiol 2019; 599:2453-2469. [PMID: 31215646 PMCID: PMC7241089 DOI: 10.1113/jp278173] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/17/2019] [Indexed: 12/25/2022] Open
Abstract
Key points In people or animals with incomplete spinal cord injury (SCI), changing a spinal reflex through an operant conditioning protocol can improve locomotion. All previous studies conditioned the reflex during steady‐state maintenance of a specific posture. By contrast, the present study down‐conditioned the reflex during the swing‐phase of locomotion in people with hyperreflexia as a result of chronic incomplete SCI. The aim was to modify the functioning of the reflex in a specific phase of a dynamic movement. This novel swing‐phase conditioning protocol decreased the reflex much faster and farther than did the steady‐state protocol in people or animals with or without SCI, and it also improved locomotion. The reflex decrease persisted for at least 6 months after conditioning ended. The results suggest that conditioning reflex function in a specific phase of a dynamic movement offers a new approach to enhancing and/or accelerating recovery after SCI or in other disorders.
Abstract In animals and people with incomplete spinal cord injury, appropriate operant conditioning of a spinal reflex can improve impaired locomotion. In all previous conditioning studies, the reflex was conditioned during steady‐state maintenance of a stable posture; this steady‐state protocol aimed to change the excitability of the targeted reflex pathway; reflex size gradually changed over 8–10 weeks. The present study introduces a new protocol, comprising a dynamic protocol that aims to change the functioning of the reflex pathway during a specific phase of a complex movement. Specifically, we down‐conditioned the soleus H‐reflex during the swing‐phase of locomotion in people with hyperreflexia as a result of chronic incomplete SCI. The swing‐phase H‐reflex, which is absent or very small in neurologically normal individuals, is abnormally large in this patient population. The results were clear. With swing‐phase down‐conditioning, the H‐reflex decreased much faster and farther than did the H‐reflex in all previous animal or human studies with the steady‐state protocol, and the decrease persisted for at least 6 months after conditioning ended. The H‐reflex decrease was accompanied by improvements in walking speed and in the modulation of locomotor electromyograph activity in proximal and distal muscles of both legs. These results provide new insight into the factors controlling spinal reflex conditioning; they suggest that the conditioning protocols targeting reflex function in a specific movement phase provide a promising new opportunity to enhance functional recovery after SCI or in other disorders. In people or animals with incomplete spinal cord injury (SCI), changing a spinal reflex through an operant conditioning protocol can improve locomotion. All previous studies conditioned the reflex during steady‐state maintenance of a specific posture. By contrast, the present study down‐conditioned the reflex during the swing‐phase of locomotion in people with hyperreflexia as a result of chronic incomplete SCI. The aim was to modify the functioning of the reflex in a specific phase of a dynamic movement. This novel swing‐phase conditioning protocol decreased the reflex much faster and farther than did the steady‐state protocol in people or animals with or without SCI, and it also improved locomotion. The reflex decrease persisted for at least 6 months after conditioning ended. The results suggest that conditioning reflex function in a specific phase of a dynamic movement offers a new approach to enhancing and/or accelerating recovery after SCI or in other disorders.
Collapse
Affiliation(s)
- Aiko K Thompson
- College of Health Professions, Medical University of South Carolina, Charleston, SC, USA
| | - Jonathan R Wolpaw
- Wadsworth Center, NYS Department of Health, Albany, NY, USA.,Department of Neurology, Stratton VA Medical Center, Albany, NY, USA.,Department of Biomedical Sciences, State University of New York, Albany, NY, USA
| |
Collapse
|
4
|
Thompson AK, Fiorenza G, Smyth L, Favale B, Brangaccio J, Sniffen J. Operant conditioning of the motor-evoked potential and locomotion in people with and without chronic incomplete spinal cord injury. J Neurophysiol 2019; 121:853-866. [PMID: 30625010 DOI: 10.1152/jn.00557.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Foot drop is very common among people with chronic incomplete spinal cord injury (SCI) and likely stems from SCI that disturbs the corticospinal activation of the ankle dorsiflexor tibialis anterior (TA). Thus, if one can recover or increase the corticospinal excitability reduced by SCI, motor function recovery may be facilitated. Here, we hypothesized that in people suffering from weak dorsiflexion due to chronic incomplete SCI, increasing the TA motor-evoked potential (MEP) through operant up-conditioning can improve dorsiflexion during locomotion, while in people without any injuries, it would have little impact on already normal locomotion. Before and after 24 MEP conditioning or control sessions, locomotor electromyography (EMG) and kinematics were measured. This study reports the results of these locomotor assessments. In participants without SCI, locomotor EMG activity, soleus Hoffmann reflex modulation, and joint kinematics did not change, indicating that MEP up-conditioning or repeated single-pulse transcranial magnetic stimulation (i.e., control protocol) does not influence normal locomotion. In participants with SCI, MEP up-conditioning increased TA activity during the swing-to-swing stance transition phases and ankle joint motion during locomotion in the conditioned leg and increased walking speed consistently. In addition, the swing-phase TA activity and ankle joint motion also improved in the contralateral leg. The results are consistent with our hypothesis. Together with the previous operant conditioning studies in humans and rats, the present study suggests that operant conditioning can be a useful therapeutic tool for enhancing motor function recovery in people with SCI and other central nervous system disorders. NEW & NOTEWORTHY This study examined the functional impact of operant conditioning of motor-evoked potential (MEP) to transcranial magnetic stimulation that aimed to increase corticospinal excitability for the ankle dorsiflexor tibialis anterior (TA). In people with chronic incomplete spinal cord injury (SCI), MEP up-conditioning increased TA activity and improved dorsiflexion during locomotion, while in people without injuries, it had little impact on already normal locomotion. MEP conditioning may potentially be used to enhance motor function recovery after SCI.
Collapse
Affiliation(s)
- Aiko K Thompson
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina , Charleston, South Carolina
| | - Gina Fiorenza
- United Technologies Aerospace Systems, Windsor Locks, Connecticut
| | - Lindsay Smyth
- Helen Hayes Hospital, New York State Department of Health, West Haverstraw, New York
| | - Briana Favale
- Helen Hayes Hospital, New York State Department of Health, West Haverstraw, New York
| | - Jodi Brangaccio
- Helen Hayes Hospital, New York State Department of Health, West Haverstraw, New York
| | - Janice Sniffen
- Department of Physical Therapy, School of Health Technology and Management, Stony Brook University , Stony Brook, New York
| |
Collapse
|
5
|
Geertsen SS, Willerslev-Olsen M, Lorentzen J, Nielsen JB. Development and aging of human spinal cord circuitries. J Neurophysiol 2017; 118:1133-1140. [PMID: 28566459 DOI: 10.1152/jn.00103.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/25/2017] [Accepted: 05/25/2017] [Indexed: 01/25/2023] Open
Abstract
The neural motor circuitries in the spinal cord receive information from our senses and the rest of the nervous system and translate it into purposeful movements, which allow us to interact with the rest of the world. In this review, we discuss how these circuitries are established during early development and the extent to which they are shaped according to the demands of the body that they control and the environment with which the body has to interact. We also discuss how aging processes and physiological changes in our body are reflected in adaptations of activity in the spinal cord motor circuitries. The complex, multifaceted connectivity of the spinal cord motor circuitries allows them to generate vastly different movements and to adapt their activity to meet new challenges imposed by bodily changes or a changing environment. There are thus plenty of possibilities for adaptive changes in the spinal motor circuitries both early and late in life.
Collapse
Affiliation(s)
- Svend Sparre Geertsen
- Neural Control of Movement Research Group, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen N, Denmark.,Department of Nutrition, Exercise, and Sports, University of Copenhagen, Copenhagen N, Denmark; and
| | - Maria Willerslev-Olsen
- Neural Control of Movement Research Group, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen N, Denmark.,Elsass Institute, Charlottenlund, Denmark
| | - Jakob Lorentzen
- Neural Control of Movement Research Group, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen N, Denmark.,Elsass Institute, Charlottenlund, Denmark
| | - Jens Bo Nielsen
- Neural Control of Movement Research Group, Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen N, Denmark; .,Elsass Institute, Charlottenlund, Denmark
| |
Collapse
|
6
|
Smith AC, Knikou M. A Review on Locomotor Training after Spinal Cord Injury: Reorganization of Spinal Neuronal Circuits and Recovery of Motor Function. Neural Plast 2016; 2016:1216258. [PMID: 27293901 PMCID: PMC4879237 DOI: 10.1155/2016/1216258] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/20/2016] [Indexed: 01/01/2023] Open
Abstract
Locomotor training is a classic rehabilitation approach utilized with the aim of improving sensorimotor function and walking ability in people with spinal cord injury (SCI). Recent studies have provided strong evidence that locomotor training of persons with clinically complete, motor complete, or motor incomplete SCI induces functional reorganization of spinal neuronal networks at multisegmental levels at rest and during assisted stepping. This neuronal reorganization coincides with improvements in motor function and decreased muscle cocontractions. In this review, we will discuss the manner in which spinal neuronal circuits are impaired and the evidence surrounding plasticity of neuronal activity after locomotor training in people with SCI. We conclude that we need to better understand the physiological changes underlying locomotor training, use physiological signals to probe recovery over the course of training, and utilize established and contemporary interventions simultaneously in larger scale research studies. Furthermore, the focus of our research questions needs to change from feasibility and efficacy to the following: what are the physiological mechanisms that make it work and for whom? The aforementioned will enable the scientific and clinical community to develop more effective rehabilitation protocols maximizing sensorimotor function recovery in people with SCI.
Collapse
Affiliation(s)
- Andrew C. Smith
- Interdepartmental Neuroscience Program, Northwestern University, Chicago, IL 60611, USA
| | - Maria Knikou
- The Graduate Center, City University of New York, New York, NY 10016, USA
- Department of Physical Therapy, College of Staten Island, City University of New York, Staten Island, NY 10314, USA
| |
Collapse
|
7
|
Hanna-Boutros B, Sangari S, Giboin LS, El Mendili MM, Lackmy-Vallée A, Marchand-Pauvert V, Knikou M. Corticospinal and reciprocal inhibition actions on human soleus motoneuron activity during standing and walking. Physiol Rep 2015; 3:3/2/e12276. [PMID: 25825912 PMCID: PMC4393188 DOI: 10.14814/phy2.12276] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Reciprocal Ia inhibition constitutes a key segmental neuronal pathway for coordination of antagonist muscles. In this study, we investigated the soleus H-reflex and reciprocal inhibition exerted from flexor group Ia afferents on soleus motoneurons during standing and walking in 15 healthy subjects following transcranial magnetic stimulation (TMS). The effects of separate TMS or deep peroneal nerve (DPN) stimulation and the effects of combined (TMS + DPN) stimuli on the soleus H-reflex were assessed during standing and at mid- and late stance phases of walking. Subthreshold TMS induced short-latency facilitation on the soleus H-reflex that was present during standing and at midstance but not at late stance of walking. Reciprocal inhibition was increased during standing and at late stance but not at the midstance phase of walking. The effects of combined TMS and DPN stimuli on the soleus H-reflex significantly changed between tasks, resulting in an extra facilitation of the soleus H-reflex during standing and not during walking. Our findings indicate that corticospinal inputs and Ia inhibitory interneurons interact at the spinal level in a task-dependent manner, and that corticospinal modulation of reciprocal Ia inhibition is stronger during standing than during walking.
Collapse
Affiliation(s)
- Berthe Hanna-Boutros
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7371, UMR_S 1146, LIB, Paris, France CNRS, UMR 7371, LIB, Paris, France INSERM, UMR_S 1146, LIB, Paris, France
| | - Sina Sangari
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7371, UMR_S 1146, LIB, Paris, France CNRS, UMR 7371, LIB, Paris, France INSERM, UMR_S 1146, LIB, Paris, France
| | - Louis-Solal Giboin
- Sensorimotor Performance Laboratory, Konstanz University, Konstanz, Germany
| | - Mohamed-Mounir El Mendili
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7371, UMR_S 1146, LIB, Paris, France CNRS, UMR 7371, LIB, Paris, France INSERM, UMR_S 1146, LIB, Paris, France
| | - Alexandra Lackmy-Vallée
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7371, UMR_S 1146, LIB, Paris, France CNRS, UMR 7371, LIB, Paris, France INSERM, UMR_S 1146, LIB, Paris, France
| | - Véronique Marchand-Pauvert
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7371, UMR_S 1146, LIB, Paris, France CNRS, UMR 7371, LIB, Paris, France INSERM, UMR_S 1146, LIB, Paris, France
| | - Maria Knikou
- The Graduate Center, City University of New York, New York, New York Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
8
|
Knikou M, Smith AC, Mummidisetty CK. Locomotor training improves reciprocal and nonreciprocal inhibitory control of soleus motoneurons in human spinal cord injury. J Neurophysiol 2015; 113:2447-60. [PMID: 25609110 DOI: 10.1152/jn.00872.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/20/2015] [Indexed: 12/19/2022] Open
Abstract
Pathologic reorganization of spinal networks and activity-dependent plasticity are common neuronal adaptations after spinal cord injury (SCI) in humans. In this work, we examined changes of reciprocal Ia and nonreciprocal Ib inhibition after locomotor training in 16 people with chronic SCI. The soleus H-reflex depression following common peroneal nerve (CPN) and medial gastrocnemius (MG) nerve stimulation at short conditioning-test (C-T) intervals was assessed before and after training in the seated position and during stepping. The conditioned H reflexes were normalized to the unconditioned H reflex recorded during seated. During stepping, both H reflexes were normalized to the maximal M wave evoked at each bin of the step cycle. In the seated position, locomotor training replaced reciprocal facilitation with reciprocal inhibition in all subjects, and Ib facilitation was replaced by Ib inhibition in 13 out of 14 subjects. During stepping, reciprocal inhibition was decreased at early stance and increased at midswing in American Spinal Injury Association Impairment Scale C (AIS C) and was decreased at midstance and midswing phases in AIS D after training. Ib inhibition was decreased at early swing and increased at late swing in AIS C and was decreased at early stance phase in AIS D after training. The results of this study support that locomotor training alters postsynaptic actions of Ia and Ib inhibitory interneurons on soleus motoneurons at rest and during stepping and that such changes occur in cases with limited or absent supraspinal inputs.
Collapse
Affiliation(s)
- Maria Knikou
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois; Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg Medical School, Chicago, Illinois; Graduate Center/The City University of New York, New York, New York; and Department of Physical Therapy, College of Staten Island, Staten Island, New York
| | - Andrew C Smith
- Northwestern University Interdepartmental Neuroscience Program, Chicago, Illinois
| | | |
Collapse
|
9
|
Operant conditioning of a spinal reflex can improve locomotion after spinal cord injury in humans. J Neurosci 2013; 33:2365-75. [PMID: 23392666 DOI: 10.1523/jneurosci.3968-12.2013] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Operant conditioning protocols can modify the activity of specific spinal cord pathways and can thereby affect behaviors that use these pathways. To explore the therapeutic application of these protocols, we studied the impact of down-conditioning the soleus H-reflex in people with impaired locomotion caused by chronic incomplete spinal cord injury. After a baseline period in which soleus H-reflex size was measured and locomotion was assessed, subjects completed either 30 H-reflex down-conditioning sessions (DC subjects) or 30 sessions in which the H-reflex was simply measured [unconditioned (UC) subjects], and locomotion was reassessed. Over the 30 sessions, the soleus H-reflex decreased in two-thirds of the DC subjects (a success rate similar to that in normal subjects) and remained smaller several months later. In these subjects, locomotion became faster and more symmetrical, and the modulation of EMG activity across the step cycle increased bilaterally. Furthermore, beginning about halfway through the conditioning sessions, all of these subjects commented spontaneously that they were walking faster and farther in their daily lives, and several noted less clonus, easier stepping, and/or other improvements. The H-reflex did not decrease in the other DC subjects or in any of the UC subjects; and their locomotion did not improve. These results suggest that reflex-conditioning protocols can enhance recovery of function after incomplete spinal cord injuries and possibly in other disorders as well. Because they are able to target specific spinal pathways, these protocols could be designed to address each individual's particular deficits, and might thereby complement other rehabilitation methods.
Collapse
|
10
|
Influence of stimulus intensity on the soleus H-reflex amplitude and modulation during locomotion. J Electromyogr Kinesiol 2012. [PMID: 23186866 DOI: 10.1016/j.jelekin.2012.10.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Diverging results have been reported regarding the modulation and amplitude of the soleus H-reflex measured during human walking and running. A possible explanation to this could be the use of too high stimulus strength in some studies while not in others. During activities like walking and running it is necessary to use a small M-wave to control the effective stimulus strength during all phases of the movement. This implies that the descending part of the H-reflex recruitment curve is being used, which may lead to an unwanted suppression of the H-reflex due to limitations imbedded within the H-reflex methodology itself. Accordingly, the purpose of the present study was to study the effect on the soleus H-reflex during walking and running using stimulus intensities normally considered too high (up to 45% Mmax). Using M-waves of 25-45% Mmax as opposed to 5-25% Mmax showed a significant suppression of the peak H-reflex during the stance phase of walking, while no changes were observed during running. No differences were observed regarding modulation pattern. So a possible use of too high stimulus intensity cannot explain the differences mentioned. The surprising result in running may be explained by the much higher voluntary muscle activity, which implies the existence of a V-wave influencing the H-reflex amplitude in positive direction.
Collapse
|
11
|
Mummidisetty CK, Smith AC, Knikou M. Modulation of reciprocal and presynaptic inhibition during robotic-assisted stepping in humans. Clin Neurophysiol 2012; 124:557-64. [PMID: 23046639 DOI: 10.1016/j.clinph.2012.09.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 09/11/2012] [Accepted: 09/13/2012] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To establish the modulation pattern of reciprocal inhibition and presynaptic inhibition of soleus Ia afferents during robot-assisted stepping in healthy subjects. METHODS During stepping, the soleus H-reflex was conditioned by percutaneous stimulation of the ipsilateral common peroneal nerve with a single pulse at stimulation intensities that ranged from 0.9 to 1.2 TA M-wave motor thresholds across subjects. To control for movement of recording and stimulating electrodes, a supramaximal stimulus 80ms after the conditioned and/or unconditioned H-reflexes was delivered to the posterior tibial nerve. The short (2, 3, 4ms) and long (60-80ms) conditioning-test intervals at which the largest amount of reflex depression was observed with the subjects seated were utilized during stepping. Stimuli were randomly dispersed across the step cycle which was divided into 16 equal bins. RESULTS Reciprocal inhibition exerted from flexor group I afferents onto soleus motoneurons was decreased at mid-stance and increased and late-stance and throughout the swing phase. Presynaptic inhibition of soleus Ia afferents was increased at heel strike and decreased at late-stance and early swing phases. CONCLUSION Reciprocal inhibition between ankle antagonistic muscles and presynaptic inhibition of soleus Ia afferents are modulated in a similar pattern to that reported during walking on a treadmill with full weight bearing and without robot-assisted leg movement. SIGNIFICANCE The activity of spinal interneuronal circuits engaged in patterned locomotor activity supports a reciprocal gait pattern during robot-assisted stepping in healthy humans.
Collapse
Affiliation(s)
- Chaithanya K Mummidisetty
- Electrophysiological Analysis of Gait & Posture Laboratory, Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL, USA
| | | | | |
Collapse
|
12
|
Knikou M, Mummidisetty CK. Reduced reciprocal inhibition during assisted stepping in human spinal cord injury. Exp Neurol 2011; 231:104-12. [PMID: 21684274 DOI: 10.1016/j.expneurol.2011.05.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 05/20/2011] [Accepted: 05/26/2011] [Indexed: 10/18/2022]
Abstract
The aim of this study was to establish the modulation pattern of the reciprocal inhibition exerted from tibialis anterior (TA) group I afferents onto soleus motoneurons during body weight support (BWS) assisted stepping in people with spinal cord injury (SCI). During assisted stepping, the soleus H-reflex was conditioned by percutaneous stimulation of the ipsilateral common peroneal nerve at one fold TA M-wave motor threshold with a single pulse delivered at a short conditioning-test interval. To counteract movement of recording and stimulating electrodes, a supramaximal stimulus at 80-100 ms after the test H-reflex was delivered. Stimuli were randomly dispersed across the step cycle which was divided into 16 equal bins. The conditioned soleus H-reflex was significantly facilitated throughout the stance phase, while during swing no significant changes on the conditioned H-reflex were observed when compared to the unconditioned soleus H-reflex recorded during stepping. Spontaneous clonic activity in triceps surae muscle occurred in multiple phases of the step cycle at a mean frequency of 7 Hz for steps with and without stimulation. This suggests that electrical excitation of TA and soleus group Ia afferents did not contribute to manifestation of ankle clonus. Absent reciprocal inhibition is likely responsible for lack of soleus H-reflex depression in swing phase observed in these patients. The pronounced reduced reciprocal inhibition in stance phase may contribute to impaired levels of co-contraction of antagonistic ankle muscles. Based on these findings, we suggest that rehabilitation should selectively target to transform reciprocal facilitation to inhibition through computer controlled reflex conditioning protocols.
Collapse
Affiliation(s)
- Maria Knikou
- The Graduate Center, City University of New York/College of Staten Island, Staten Island, NY 10314, USA.
| | | |
Collapse
|
13
|
Kamibayashi K, Nakajima T, Fujita M, Takahashi M, Ogawa T, Akai M, Nakazawa K. Effect of sensory inputs on the soleus H-reflex amplitude during robotic passive stepping in humans. Exp Brain Res 2010; 202:385-95. [PMID: 20044745 DOI: 10.1007/s00221-009-2145-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 12/15/2009] [Indexed: 11/30/2022]
Abstract
We investigated the modulation of the soleus (Sol) Hoffmann (H-) reflex excitability by peripheral sensory inputs during passive stepping using a robotic-driven gait orthosis in healthy subjects and spinal cord-injured patients. The Sol H-reflex was evoked at standing and at six phases during passive stepping in 40 and 100% body weight unloaded conditions. The Sol H-reflex excitability was significantly inhibited during passive stepping when compared with standing posture at each unloaded condition. During passive stepping, the H-reflex amplitude was significantly smaller in the early- and mid-swing phases than in the stance phase, which was similar to the modulation pattern previously reported for normal walking. No significant differences were observed in the H-reflex amplitude between the two unloaded conditions during passive stepping. The reflex depression observed at the early part of the swing phase during passive stepping might be attributed to the sensory inputs elicited by flexion of the hip and knee joints. The present study provides evidence that peripheral sensory inputs have a significant role in phase-dependent modulation of the Sol H-reflex during walking, and that the Sol H-reflex excitability might be less affected by load-related afferents during walking.
Collapse
Affiliation(s)
- Kiyotaka Kamibayashi
- Graduate School of Systems and Information Engineering, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan.
| | | | | | | | | | | | | |
Collapse
|
14
|
Tanabe S, Yamaguchi T, Watanabe T, Muraoka Y, Masakado Y. Effects of transcutaneous electrical stimulation combined with locomotion-like movement in the treatment of post-stroke gait disorder: a single-case study. Short report. Disabil Rehabil 2009; 30:411-6. [PMID: 17852293 DOI: 10.1080/09638280701353301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE This study was designed to examine the effects of electrical stimulation combined with locomotion-like movement (ES/LM) for improving gait disorder in a stroke patient. METHOD A four-phase ABAB single-subject design with five therapy sessions per phase was employed. In the intervention phases, transcutaneous electrical stimulation was applied to the tibialis anterior (at the end of the hip extension phase and in the initial hip flexion phase) and the soleus (in the initial hip extension phase) during passive hip flexion and extension. To assess improvement, the soleus H-reflex and the ambulatory function were measured (gait velocity and step length). RESULTS Application of ES/LM resulted in a decrease of the soleus H-reflex and significant increase of gait velocity and step length. CONCLUSION These findings suggest that ES/LM is a feasible treatment method for impaired ambulatory function in stroke patients at the subacute stage after the event.
Collapse
Affiliation(s)
- Shigeo Tanabe
- Keio University Tsukigase Rehabilitation Center, Shizuoka, Japan.
| | | | | | | | | |
Collapse
|
15
|
Comparison of Single Bout Effects of Bicycle Training Versus Locomotor Training on Paired Reflex Depression of the Soleus H-Reflex After Motor Incomplete Spinal Cord Injury. Arch Phys Med Rehabil 2009; 90:1218-28. [DOI: 10.1016/j.apmr.2009.01.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 01/28/2009] [Accepted: 01/28/2009] [Indexed: 11/17/2022]
|
16
|
Knikou M. The H-reflex as a probe: pathways and pitfalls. J Neurosci Methods 2008; 171:1-12. [PMID: 18394711 DOI: 10.1016/j.jneumeth.2008.02.012] [Citation(s) in RCA: 273] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 02/21/2008] [Accepted: 02/26/2008] [Indexed: 11/30/2022]
Abstract
The Hoffmann (or H) reflex is considered a major probe for non-invasive study of sensorimotor integration and plasticity of the central nervous system in humans. The first section of this paper reviews the neurophysiological properties of the H-reflex, which if ignored create serious pitfalls in human experimental studies. The second section reviews the spinal inhibitory circuits and neuronal pathways that can be indirectly assessed in humans using the H-reflex. The most confounding factor is that reciprocal, presynaptic, and Ib inhibition do not act in isolation during movement. Therefore, characterization of these spinal circuits should be more comprehensive, especially in cases of a neurological injury because neurophysiological findings are critical for the development of successful rehabilitation protocols. To conclude, the H-reflex is a highly sensitive reflex with an amplitude that is the result of complex neural mechanisms that act synchronously. If these limitations are recognized and addressed, the H-reflex constitutes one of the major probes to assess excitability of interneuronal circuits at rest and during movement in humans.
Collapse
Affiliation(s)
- Maria Knikou
- Health Sciences Doctoral Programs, City University of New York, Staten Island, NY 10314, USA.
| |
Collapse
|
17
|
Phadke CP, Wu SS, Thompson FJ, Behrman AL. Comparison of Soleus H-Reflex Modulation After Incomplete Spinal Cord Injury in 2 Walking Environments: Treadmill With Body Weight Support and Overground. Arch Phys Med Rehabil 2007; 88:1606-13. [DOI: 10.1016/j.apmr.2007.07.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2007] [Revised: 06/28/2007] [Accepted: 07/17/2007] [Indexed: 11/28/2022]
|
18
|
Lamontagne A, Stephenson JL, Fung J. Physiological evaluation of gait disturbances post stroke. Clin Neurophysiol 2007; 118:717-29. [PMID: 17307395 DOI: 10.1016/j.clinph.2006.12.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 12/08/2006] [Accepted: 12/26/2006] [Indexed: 11/16/2022]
Abstract
A large proportion of stroke survivors have to deal with problems in mobility. Proper evaluations must be undertaken to understand the sensorimotor impairments underlying locomotor disorders post stroke, so that evidence-based interventions can be developed. The current electrophysiological, biomechanical, and imagery evaluations that provide insight into locomotor dysfunction post stroke, as well as their advantages and limitations, are reviewed in this paper. In particular, electrophysiological evaluations focus on the contrast of electromyographic patterns and integrity of spinal reflex pathways during perturbed and unperturbed locomotion between persons with stroke and healthy individuals. At a behavioral level, biomechanical evaluations that include temporal distance factors, kinematic and kinetic analyses, as well as the mechanical energy and metabolic cost, are useful when combined with electrophysiological measures for the interpretation of gait disturbances that are related to the control of the central nervous system or secondary to biomechanical constraints. Finally, current methods in imaging and transcranial magnetic stimulation can provide further insight into cortical control of locomotion and the integrity of the corticospinal pathways.
Collapse
Affiliation(s)
- Anouk Lamontagne
- School of Physical and Occupational Therapy, McGill University, Montreal, Quebec, Canada.
| | | | | |
Collapse
|
19
|
Gerasimenko YP, Lavrov IA, Courtine G, Ichiyama RM, Dy CJ, Zhong H, Roy RR, Edgerton VR. Spinal cord reflexes induced by epidural spinal cord stimulation in normal awake rats. J Neurosci Methods 2006; 157:253-63. [PMID: 16764937 DOI: 10.1016/j.jneumeth.2006.05.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Revised: 04/06/2006] [Accepted: 05/02/2006] [Indexed: 10/24/2022]
Abstract
Motor responses in hindlimb muscles to epidural spinal cord stimulation in normal awake rats during bipedal standing were studied. Stimulation at L2 or S1 induced simultaneous and bilateral responses in the vastus lateralis, semitendinosus, tibialis anterior, and medial gastrocnemius muscles. Stimulation at S1 evoked an early (ER), middle (MR) and late (LR) response: stimulation at L2 elicited only a MR and LR. Vibration and double epidural stimulation testing suggests that the ER is a direct motor response, whereas the MR and LR are mediated synaptically. MR has properties of a monosynaptic reflex, i.e., inhibited during vibration and depressed during the second pulse of a double stimulation. Some components of the LR seem to be mediated by afferents associated with the flexor reflex and probably involve group II afferents. During bipedal treadmill stepping, the MR was modulated in extensors, whereas the LR was modulated in flexors. These results show differential modulation of monosynaptic and polysynaptic reflexes in flexor and extensor motor pools during locomotion. Monosynaptic responses to stimulation at either L2 or S1 generally were amplified in extensors during the stance phase and in flexors during the swing phase of the step cycle. No correlation was found between the ER and the EMG background during stepping, whereas both the MR and LR were closely correlated with the changes in the EMG activity level of the corresponding muscle. These data demonstrate the feasibility of using epidural stimulation for examining monosynaptic and polysynaptic pathways to motor pools associated with multiple muscles during movement and over a prolonged period.
Collapse
Affiliation(s)
- Yury P Gerasimenko
- Department of Physiological Science, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Ung RV, Imbeault MA, Ethier C, Brizzi L, Capaday C. On the Potential Role of the Corticospinal Tract in the Control and Progressive Adaptation of the Soleus H-Reflex During Backward Walking. J Neurophysiol 2005; 94:1133-42. [PMID: 15829598 DOI: 10.1152/jn.00181.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
When untrained subjects walk backward on a treadmill, an unexpectedly large amplitude soleus H-reflex occurs in the midswing phase of backward walking. We hypothesized that activity in the corticospinal tract (CST) during midswing depolarizes the soleus α-motoneurons subliminally and thus brings them closer to threshold. To test this hypothesis, transcranial magnetic stimulation (TMS) was applied to the leg area of the motor cortex (MCx) during backward walking. Motor-evoked potentials (MEPs) were recorded from the soleus and tibialis anterior (TA) muscles in untrained subjects at different phases of the backward walking cycle. We reasoned that if soleus MEPs could be elicited in midswing, while the soleus is inactive, this would be strong evidence for increased postsynaptic excitability of the α-motoneurons. In the event, we found that in untrained subjects, despite the presence of an unexpectedly large H-reflex in midswing, no soleus MEPs were observed at that time. The soleus MEPs were in phase with the soleus electromyographic (EMG) activity during backward walking. Soleus MEPs increased more rapidly as a function of the EMG activity during voluntary activity than during backward walking. Furthermore, a conditioning stimulus to the motor cortex facilitated the soleus H-reflex at rest and during voluntary plantarflexion but not in the midswing phase of backward walking. With daily training at walking backward, the time at which the H-reflex began to increase was progressively delayed until it coincided with the onset of soleus EMG activity, and its amplitude was considerably reduced compared with its value on the first experimental day. By contrast, no changes were observed in the timing or amplitude of soleus MEPs with training. Taken together, these observations make it unlikely that the motor cortex via the CST is involved in control of the H-reflex during the backward step cycle of untrained subjects nor in its progressive adaptation with training. Our observations raise the possibility that the large amplitude of H-reflex in untrained subjects and its adaptation with training are mainly due to control of presynaptic inhibition of Ia-afferents by other descending tracts.
Collapse
Affiliation(s)
- Roth-Visal Ung
- CRULRG, Brain and Movement Laboratory, Department of Anatomy and Physiology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | | | | | | | | |
Collapse
|
21
|
Abstract
Recent studies on the functional organization and operational principles of motor cortical function, taken together, strongly support the notion that the motor cortex controls the muscle activities subserving movements in an integrated manner. For example, during pointing the shoulder, elbow and wrist muscles appear to be controlled as a coupled functional system, rather than individually and separately. The pattern of intrinsic connections between motor cortical points is likely part of the explanation of this operational principle. So too is the manner in which muscles and muscle synergies are represented in the motor cortex. However, selection of movement-related muscle synergies is likely a dynamic process involving the functional linking of a variety of motor cortical points, rather than the selection of fixed patterns embedded in the motor cortical circuitry. One of the mechanisms that may be involved in the functional linking of motor cortical points is disinhibition. Thus, motor cortical points are recruited into action by selected excitation as well as by selected release from inhibition. The incoordination of limb movements in patients after a stroke may be understood, at least in part, as a disruption of the connections between motor cortical points and of the neural mechanisms involved in their functional linking.
Collapse
Affiliation(s)
- Charles Capaday
- CRULRG, Brain and Movement Laboratory, Department of Anatomy and Physiology, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
22
|
Abstract
The purpose of this paper was to study spinal inhibition during several different motor tasks in healthy human subjects. The short-latency, reciprocal inhibitory pathways from the common peroneal (CP) nerve to the soleus muscle and from the tibial nerve to the tibialis anterior muscle were studied as a depression of ongoing voluntary electromyograph (EMG) activity. First, the effect of stimulus intensity on the amount of inhibition was examined to decide an appropriate stimulation to study the task-dependent modulation of inhibition. Then, the inhibition at one level of stimulation (1.5 x motor threshold) was investigated during standing, walking, and running. The change in slope of inhibition vs. EMG level, which approximates the fraction of ongoing activity that is inhibited, decreased with CP stimulation from 0.52 during standing to 0.30 during fast walking (6 km/h) to 0.17 during running at 9 km/h. Similarly, the slope decreased with tibial nerve stimulation from 0.68 (standing) to 0.42 (fast walking) to 0.35 (running at 9 km/h). All differences, except the last one, were highly significant (P < 0.01, Student's t-test). However, the difference between walking (0.42) and running (0.36) at the same speed (6 km/h) was not significant with tibial nerve stimulation and only significant at P < 0.05 with CP nerve stimulation (0.30, 0.20). Also, the difference between standing (0.52) and slow walking (3 km/h; 0.41) with CP stimulation was not significant, but it was significant (P < 0.01) with tibial nerve stimulation (0.68, 0.49). In conclusion, our findings indicate that spinal reciprocal inhibition decreases substantially with increasing speed and only changes to a lesser extent with task.
Collapse
Affiliation(s)
- Aiko Kido
- Centre for Neuroscience, University of Alberta, Edmonton, AB, Canada T6G 2S2
| | | | | |
Collapse
|