1
|
Quilgars C, Cazalets JR, Bertrand SS. Developmentally Regulated Modulation of Lumbar Motoneurons by Metabotropic Glutamate Receptors: A Cellular and Behavioral Analysis in Newborn Mice. Front Cell Neurosci 2021; 15:770250. [PMID: 34955751 PMCID: PMC8699010 DOI: 10.3389/fncel.2021.770250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/19/2021] [Indexed: 11/18/2022] Open
Abstract
The present study explores the impact of metabotropic glutamate receptor (mGluR) activation on activity-dependent synaptic plasticity (ADSP) and the intrinsic membrane properties of lumbar motoneurons (MNs) using a combination of biochemical, pharmacological, electrophysiological and behavioral techniques. Using spinal cord slices from C57BL/6JRJ mice at two developmental stages, 1-3 and 8-12 postnatal days (P1-P3; P8-P12, respectively), we found that ADSP expressed at glutamatergic synapses between axons conveyed in the ventrolateral funiculus (VLF) and MNs, involved mGluR activation. Using specific agonists of the three groups of mGluRs, we observed that mGluR stimulation causes subtype-specific and developmentally regulated modulation of the ADSP and synaptic transmission at VLF-MN synapses as well as the intrinsic membrane properties of MNs. RT-qPCR analysis revealed a downregulation of mGluR gene expression with age in the ventral part of the lumbar spinal cord. Interestingly, the selective harvest by laser microdissection of MNs innervating the Gastrocnemius and Tibialis anterior muscles unraveled that the level of Grm2 expression is higher in Tibialis MNs compared to Gastrocnemius MNs suggesting a specific mGluR gene expression profile in these two MN pools. Finally, we assessed the functional impact of mGluR modulation on electrically induced bouts of fictive locomotion in the isolated spinal cord preparation of P1-P3 mice, and in vivo during spontaneous episodes of swimming activity in both P1-P3 and P8-P12 mouse pups. We observed that the mGluR agonists induced distinct and specific effects on the motor burst amplitudes and period of the locomotor rhythms tested and that their actions are function of the developmental stage of the animals. Altogether our data show that the metabotropic glutamatergic system exerts a complex neuromodulation in the developing spinal lumbar motor networks and provide new insights into the expression and modulation of ADSP in MNs.
Collapse
Affiliation(s)
- Camille Quilgars
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), CNRS UMR 5287, Université de Bordeaux, Bordeaux, France.,Ecole Pratique des Hautes Etudes (EPHE), Paris Sciences et Lettres University, Paris, France
| | - Jean-René Cazalets
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), CNRS UMR 5287, Université de Bordeaux, Bordeaux, France.,Ecole Pratique des Hautes Etudes (EPHE), Paris Sciences et Lettres University, Paris, France
| | - Sandrine S Bertrand
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (INCIA), CNRS UMR 5287, Université de Bordeaux, Bordeaux, France.,Ecole Pratique des Hautes Etudes (EPHE), Paris Sciences et Lettres University, Paris, France
| |
Collapse
|
2
|
Chmykhova NM, Gapanovich SO, Pariyskaya EN, Veselkin NP. Involvement of Group II Metabotropic Glutamate Receptors in Modulation of Evoked Activity in Frog Spinal Motoneurons. J EVOL BIOCHEM PHYS+ 2019. [DOI: 10.1134/s0022093019020066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Lenschow C, Cazalets JR, Bertrand SS. Distinct and developmentally regulated activity-dependent plasticity at descending glutamatergic synapses on flexor and extensor motoneurons. Sci Rep 2016; 6:28522. [PMID: 27329279 PMCID: PMC4916427 DOI: 10.1038/srep28522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/02/2016] [Indexed: 11/09/2022] Open
Abstract
Activity-dependent synaptic plasticity (ADSP) is paramount to synaptic processing and maturation. However, identifying the ADSP capabilities of the numerous synapses converging onto spinal motoneurons (MNs) remain elusive. Using spinal cord slices from mice at two developmental stages, 1–4 and 8–12 postnatal days (P1–P4; P8–P12), we found that high-frequency stimulation of presumed reticulospinal neuron axons in the ventrolateral funiculus (VLF) induced either an NMDA receptor-dependent-long-term depression (LTD), a short-term depression (STD) or no synaptic modulation in limb MNs. Our study shows that P1–P4 cervical MNs expressed the same plasticity profiles as P8–P12 lumbar MNs rather than P1–P4 lumbar MNs indicating that ADSP expression at VLF-MN synapses is linked to the rostrocaudal development of spinal motor circuitry. Interestingly, we observed that the ADSP expressed at VLF-MN was related to the functional flexor or extensor MN subtype. Moreover, heterosynaptic plasticity was triggered in MNs by VLF axon tetanisation at neighbouring synapses not directly involved in the plasticity induction. ADSP at VLF-MN synapses specify differential integrative synaptic processing by flexor and extensor MNs and could contribute to the maturation of spinal motor circuits and developmental acquisition of weight-bearing locomotion.
Collapse
|
4
|
Dose F, Zanon P, Coslovich T, Taccola G. Nanomolar oxytocin synergizes with weak electrical afferent stimulation to activate the locomotor CpG of the rat spinal cord in vitro. PLoS One 2014; 9:e92967. [PMID: 24658101 PMCID: PMC3962494 DOI: 10.1371/journal.pone.0092967] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 02/27/2014] [Indexed: 01/08/2023] Open
Abstract
Synergizing the effect of afferent fibre stimulation with pharmacological interventions is a desirable goal to trigger spinal locomotor activity, especially after injury. Thus, to better understand the mechanisms to optimize this process, we studied the role of the neuropeptide oxytocin (previously shown to stimulate locomotor networks) on network and motoneuron properties using the isolated neonatal rat spinal cord. On motoneurons oxytocin (1 nM–1 μM) generated sporadic bursts with superimposed firing and dose-dependent depolarization. No desensitization was observed despite repeated applications. Tetrodotoxin completely blocked the effects of oxytocin, demonstrating the network origin of the responses. Recording motoneuron pool activity from lumbar ventral roots showed oxytocin mediated depolarization with synchronous bursts, and depression of reflex responses in a stimulus and peptide-concentration dependent fashion. Disinhibited bursting caused by strychnine and bicuculline was accelerated by oxytocin whose action was blocked by the oxytocin antagonist atosiban. Fictive locomotion appeared when subthreshold concentrations of NMDA plus 5HT were coapplied with oxytocin, an effect prevented after 24 h incubation with the inhibitor of 5HT synthesis, PCPA. When fictive locomotion was fully manifested, oxytocin did not change periodicity, although cycle amplitude became smaller. A novel protocol of electrical stimulation based on noisy waveforms and applied to one dorsal root evoked stereotypic fictive locomotion. Whenever the stimulus intensity was subthreshold, low doses of oxytocin triggered fictive locomotion although oxytocin per se did not affect primary afferent depolarization evoked by dorsal root pulses. Among the several functional targets for the action of oxytocin at lumbar spinal cord level, the present results highlight how small concentrations of this peptide could bring spinal networks to threshold for fictive locomotion in combination with other protocols, and delineate the use of oxytocin to strengthen the efficiency of electrical stimulation to activate locomotor circuits.
Collapse
Affiliation(s)
- Francesco Dose
- Neuroscience Department, International School for Advanced Studies (S.I.S.S.A.), Trieste, Italy
- Spinal Person Injury Neurorehabilitation Applied Laboratory (S.P.I.N.A.L.), Istituto di Medicina Fisica e Riabilitazione (IMFR), Udine, Italy
| | - Patrizia Zanon
- Neuroscience Department, International School for Advanced Studies (S.I.S.S.A.), Trieste, Italy
- Spinal Person Injury Neurorehabilitation Applied Laboratory (S.P.I.N.A.L.), Istituto di Medicina Fisica e Riabilitazione (IMFR), Udine, Italy
| | - Tamara Coslovich
- Neuroscience Department, International School for Advanced Studies (S.I.S.S.A.), Trieste, Italy
- Spinal Person Injury Neurorehabilitation Applied Laboratory (S.P.I.N.A.L.), Istituto di Medicina Fisica e Riabilitazione (IMFR), Udine, Italy
| | - Giuliano Taccola
- Neuroscience Department, International School for Advanced Studies (S.I.S.S.A.), Trieste, Italy
- Spinal Person Injury Neurorehabilitation Applied Laboratory (S.P.I.N.A.L.), Istituto di Medicina Fisica e Riabilitazione (IMFR), Udine, Italy
- * E-mail:
| |
Collapse
|
5
|
Spinal inhibitory circuits and their role in motor neuron degeneration. Neuropharmacology 2013; 82:101-7. [PMID: 24157492 DOI: 10.1016/j.neuropharm.2013.10.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 10/01/2013] [Accepted: 10/04/2013] [Indexed: 12/12/2022]
Abstract
In the spinal cord neuronal activity is controlled by the balance between excitatory and inhibitory neurotransmission, mediated mainly by the neurotransmitters glutamate and GABA/glycine, respectively. Alterations of this equilibrium have been associated with spinal motor neuron hyperexcitability and degeneration, which can be induced by excitotoxicity or by decreasing inhibitory neurotransmission. Here we review the ventral horn neuronal network and the possible involvement of inhibitory circuits in the mechanisms of degeneration of motor neurons characteristic of amyotrophic lateral sclerosis (ALS). Whereas glutamate mediated excitotoxicity seems to be an important factor, recent experimental and histopathological evidence argue in favor of a decreased activity of the inhibitory circuits controlling motor neuron excitability, mainly the recurrent inhibition exerted by Renshaw cells. A decreased Renshaw cell activity may be caused by cell loss or by a reduction of its inhibitory action secondary to a decreased excitation from cholinergic interneurons. Ultimately, inhibitory failure by either mechanism might lead to motor neuron degeneration, and this suggests inhibitory circuits and Renshaw cells as pharmacologic targets for ALS treatment.
Collapse
|
6
|
Dose F, Menosso R, Taccola G. Rat locomotor spinal circuits in vitro are activated by electrical stimulation with noisy waveforms sampled from human gait. Physiol Rep 2013; 1:e00025. [PMID: 24303112 PMCID: PMC3831921 DOI: 10.1002/phy2.25] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/08/2013] [Accepted: 06/11/2013] [Indexed: 12/25/2022] Open
Abstract
Noisy waveforms, sampled from an episode of fictive locomotion (FL) and delivered to a dorsal root (DR), are a novel electrical stimulating protocol demonstrated as the most effective for generating the locomotor rhythm in the rat isolated spinal cord. The present study explored if stimulating protocols constructed by sampling real human locomotion could be equally efficient to activate these locomotor networks in vitro. This approach may extend the range of usable stimulation protocols and provide a wide palette of noisy waveforms for this purpose. To this end, recorded electromyogram (EMG) from leg muscles of walking adult volunteers provided a protocol named ReaListim (Real Locomotion-induced stimulation) that applied to a single DR successfully activated FL. The smoothed kinematic profile of the same gait failed to do so like nonphasic noisy patterns derived from standing and isometric contraction. Power spectrum analysis showed distinctive low-frequency domains in ReaListim, along with the high-frequency background noise. The current study indicates that limb EMG signals (recorded during human locomotion) applied to DR of the rat spinal cord are more effective than EMG traces taken during standing or isometric contraction of the same muscles to activate locomotor networks. Finally, EMGs recorded during various human motor tasks demonstrated that noisy waves of the same periodicity as ReaListim, could efficiently activate the in vitro central pattern generator (CPG), regardless of the motor task from which they had been sampled. These data outline new strategies to optimize functional stimulation of spinal networks after injury.
Collapse
Affiliation(s)
- Francesco Dose
- Neuroscience Department, International School for Advanced Studies (SISSA) via Bonomea 265, Trieste, Italy ; SPINAL (Spinal Person Injury Neurorehabilitation Applied Laboratory), Istituto di Medicina Fisica e Riabilitazione (IMFR) via Gervasutta 48, Udine, Italy
| | | | | |
Collapse
|
7
|
A₁ adenosine receptor modulation of chemically and electrically evoked lumbar locomotor network activity in isolated newborn rat spinal cords. Neuroscience 2012; 222:191-204. [PMID: 22824428 DOI: 10.1016/j.neuroscience.2012.07.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 06/15/2012] [Accepted: 07/12/2012] [Indexed: 01/24/2023]
Abstract
It is not well-studied how the ubiquitous neuromodulator adenosine (ADO) affects mammalian locomotor network activities. We analyzed this here with focus on roles of 8-cyclopentyl-1,3-dipropylxanthine (DPCPX)-sensitive A(1)-type ADO receptors. For this, we recorded field potentials from ventral lumbar nerve roots and electrically stimulated dorsal roots in isolated newborn rat spinal cords. At ≥ 25μM, bath-applied ADO slowed synchronous bursting upon blockade of anion-channel-mediated synaptic inhibition by bicuculline (20 μM) plus strychnine (1 μM) and this depression was countered by DPCPX (1 μM) as tested at 100 μM ADO. ADO abolished this disinhibited rhythm at ≥ 500 μM. Contrary, the single electrical pulse-evoked dorsal root reflex, which was enhanced in bicuculline/strychnine-containing solution, persisted at all ADO doses (5 μM-2 mM). In control solution, ≥ 500 μM ADO depressed this reflex and pulse train-evoked bouts of alternating fictive locomotion; this inhibition was reversed by 1 μM DPCPX. ADO (5 μM-2 mM) did not depress, but stabilize alternating fictive locomotion evoked by serotonin (10 μM) plus N-methyl-d-aspartate (4-5 μM). Addition of DPCPX (1μM) to control solution did not change either the dorsal root reflex or rhythmic activities indicating lack of endogenous A(1) receptor activity. Our findings show A(1) receptor involvement in ADO depression of the dorsal root reflex, electrically evoked fictive locomotion and spontaneous disinhibited lumbar motor bursting. Contrary, chemically evoked fictive locomotion and the enhanced dorsal root reflex in disinhibited lumbar locomotor networks are resistant to ADO. Because ADO effects in standard solution occurred at doses that are notably higher than those occurring in vivo, we hypothesize that newborn rat locomotor networks are rather insensitive to this neuromodulator.
Collapse
|
8
|
Miles GB, Sillar KT. Neuromodulation of Vertebrate Locomotor Control Networks. Physiology (Bethesda) 2011; 26:393-411. [DOI: 10.1152/physiol.00013.2011] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vertebrate locomotion must be adaptable in light of changing environmental, organismal, and developmental demands. Much of the underlying flexibility in the output of central pattern generating (CPG) networks of the spinal cord and brain stem is endowed by neuromodulation. This review provides a synthesis of current knowledge on the way that various neuromodulators modify the properties of and connections between CPG neurons to sculpt CPG network output during locomotion.
Collapse
Affiliation(s)
- Gareth B. Miles
- School of Biology, University of St. Andrews, St. Andrews, Scotland, United Kingdom
| | - Keith T. Sillar
- School of Biology, University of St. Andrews, St. Andrews, Scotland, United Kingdom
| |
Collapse
|
9
|
Mandadi S, Nakanishi ST, Takashima Y, Dhaka A, Patapoutian A, McKemy DD, Whelan PJ. Locomotor networks are targets of modulation by sensory transient receptor potential vanilloid 1 and transient receptor potential melastatin 8 channels. Neuroscience 2009; 162:1377-97. [PMID: 19482068 DOI: 10.1016/j.neuroscience.2009.05.063] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 05/22/2009] [Accepted: 05/23/2009] [Indexed: 01/17/2023]
Abstract
It is well recognized that proprioceptive afferent inputs can control the timing and pattern of locomotion. C and Adelta afferents can also affect locomotion but an unresolved issue is the identity of the subsets of these afferents that encode defined modalities. Over the last decade, the transient receptor potential (TRP) ion channels have emerged as a family of non-selective cation conductances that can label specific subsets of afferents. We focus on a class of TRPs known as ThermoTRPs which are well known to be sensor receptors that transduce changes in heat and cold. ThermoTRPs are known to help encode somatosensation and painful stimuli, and receptors have been found on C and Adelta afferents with central projections onto dorsal horn laminae. Here we show, using in vitro neonatal mouse spinal cord preparations, that activation of both spinal and peripheral transient receptor potential vanilloid 1 (TRPV1) and transient receptor potential melastatin 8 (TRPM8) afferent terminals modulates central pattern generators (CPGs). Capsaicin or menthol and cooling modulated both sacrocaudal afferent (SCA) evoked and monoaminergic drug-induced rhythmic locomotor-like activity in spinal cords from wild type but not TRPV1-null (trpv1(-/-)) or TRPM8-null (trpm8(-/-)) mice, respectively. Capsaicin induced an initial increase in excitability of the lumbar motor networks, while menthol or cooling caused a decrease in excitability. Capsaicin and menthol actions on CPGs involved excitatory and inhibitory glutamatergic mechanisms, respectively. These results for the first time show that dedicated pathways of somatosensation and pain identified by TRPV1 or TRPM8 can target spinal locomotor CPGs.
Collapse
Affiliation(s)
- S Mandadi
- Hotchkiss Brain Institute, 3330 Hospital Drive Northwest, Calgary, AB, T2N 4N1 Canada
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
We have explored the potential involvement of the three main classes of metabotropic glutamate receptor in the modulation of a spinal locomotor network using tadpoles of the anuran amphibian Xenopus laevis. Selective activation of group I receptors in Xenopus embryos and young larvae using the general group I agonist DHPG [(S)-3,5-dihyroxyphenylglycine] significantly increased the frequency of swimming and the number of spontaneously occurring swimming episodes, as monitored by extracellular recordings from ventral roots. Group I receptor activation was without significant effect on the duration or amplitude of motor bursts, the duration of swimming episodes, or the head-to-tail delay in the propagation of swimming activity. Activation of either group II or group III receptors, however, following bath applications of the specific agonists APDC [(2R,4R)-aminopyrrolidine-2,4-dicarboxylic acid] and L-AP4 (L-2-amino-4-phosphonobutanoate), respectively, produced a net inhibitory effect on many of the parameters of fictive swimming at both developmental stages, including a reduction in swimming frequency and episode duration, along with a significant reduction in motor burst amplitude and duration in larval animals only. Applications of selective antagonists provide evidence for activation of all three groups during swimming. The group II and III antagonists EGLU (1-ethyl-2-benzimidazolinone) and MAP4 [(S)-2-amino-2-methyl-4-phosphonobutanoate], respectively, increased, while group I antagonists, CPCCOEt and MPEP, decreased swim frequency. Our findings thus provide evidence for the presence and endogenous activation of three classes of metabotropic glutamate receptor which may function as an intrinsic modulatory control system during fictive swimming in Xenopus tadpoles.
Collapse
Affiliation(s)
- Rebecca J Chapman
- School of Biology, Bute Medical Buildings, University of St. Andrews, St. Andrews, Fife KY16 9TS, UK
| | | |
Collapse
|
11
|
Wilson JM, Cowan AI, Brownstone RM. Heterogeneous electrotonic coupling and synchronization of rhythmic bursting activity in mouse Hb9 interneurons. J Neurophysiol 2007; 98:2370-81. [PMID: 17715199 DOI: 10.1152/jn.00338.2007] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The neurons and mechanisms involved in mammalian spinal cord networks that produce rhythmic locomotor activity remain largely undefined. Hb9 interneurons, a small population of discretely localized interneurons in the mouse spinal cord, are conditionally bursting neurons. Here we applied potassium channel blockers with the aim of increasing neuronal excitability and observed that under these conditions, postnatal Hb9 interneurons exhibited bursts of action potentials with underlying voltage-independent spikelets. The bursts were insensitive to antagonists to fast chemical synaptic transmission, and the bursting and spikelets were blocked by tetrodotoxin. Calcium imaging studies using 2-photon excitation in spinal cord slices revealed that clustered Hb9 interneurons exhibited synchronous and occasional asynchronous, calcium transients that were also insensitive to fast synaptic transmission blockade. All transients were blocked by the gap junction blocker carbenoxolone. Paired whole cell patch-clamp recordings of Hb9 interneurons in the late postnatal mouse revealed common chemical synaptic inputs but no evidence of current transfer (i.e., electrotonic coupling) between the neurons. However, Hb9 and a previously defined population of non-Hb9 interneurons were electrotonically coupled. In the absence of fast chemical transmission in the whole spinal cord preparation, 2-photon excitation calcium imaging revealed bursting activity of Hb9 interneurons synchronous with rhythmic ventral root output. Thus Hb9 interneurons are both endogenous bursters and rhythmically active within a heterogeneous electrotonically coupled network. A network with these properties could produce the wide range of stable rhythms necessary for locomotor activity.
Collapse
Affiliation(s)
- J M Wilson
- Department of Anatomy and Neurobiology, Dalhousie University, Halifax, NS, Canada
| | | | | |
Collapse
|
12
|
Nistri A, Ostroumov K, Sharifullina E, Taccola G. Tuning and playing a motor rhythm: how metabotropic glutamate receptors orchestrate generation of motor patterns in the mammalian central nervous system. J Physiol 2006; 572:323-34. [PMID: 16469790 PMCID: PMC1779665 DOI: 10.1113/jphysiol.2005.100610] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Repeated motor activities like locomotion, mastication and respiration need rhythmic discharges of functionally connected neurons termed central pattern generators (CPGs) that cyclically activate motoneurons even in the absence of descending commands from higher centres. For motor pattern generation, CPGs require integration of multiple processes including activation of ion channels and transmitter receptors at strategic locations within motor networks. One emerging mechanism is activation of glutamate metabotropic receptors (mGluRs) belonging to group I, while group II and III mGluRs appear to play an inhibitory function on sensory inputs. Group I mGluRs generate neuronal membrane depolarization with input resistance increase and rapid fluctuations in intracellular Ca(2+), leading to enhanced excitability and rhythmicity. While synchronicity is probably due to modulation of inhibitory synaptic transmission, these oscillations occurring in coincidence with strong afferent stimuli or application of excitatory agents can trigger locomotor-like patterns. Hence, mGluR-sensitive spinal oscillators play a role in accessory networks for locomotor CPG activation. In brainstem networks supplying tongue muscle motoneurons, group I receptors facilitate excitatory synaptic inputs and evoke synchronous oscillations which stabilize motoneuron firing at regular, low frequency necessary for rhythmic tongue contractions. In this case, synchronicity depends on the strong electrical coupling amongst motoneurons rather than inhibitory transmission, while cyclic activation of K(ATP) conductances sets its periodicity. Activation of mGluRs is therefore a powerful strategy to trigger and recruit patterned discharges of motoneurons.
Collapse
Affiliation(s)
- Andrea Nistri
- Neurobiology Sector, CNR-INFM DEMOCRITOS National Simulation Center, International School for Advanced Studies (SISSA), Trieste, Italy.
| | | | | | | |
Collapse
|
13
|
Marchetti C, Taccola G, Nistri A. Activation of group I metabotropic glutamate receptors depresses recurrent inhibition of motoneurons in the neonatal rat spinal cord in vitro. Exp Brain Res 2005; 164:406-10. [PMID: 15991027 DOI: 10.1007/s00221-005-2368-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Accepted: 03/21/2005] [Indexed: 11/26/2022]
Abstract
This study examined whether activation of group I metabotropic glutamate receptors (mGluRs) could modulate synaptic inhibition of spinal motoneurons in the neonatal rat isolated spinal cord. Recurrent inhibitory postsynaptic potentials (IPSPs) generated by Renshaw cells were evoked via antidromic stimulation of motor axon collaterals and recorded intracellularly from lumbar motoneurons. The selective agonist of group I mGluRs DHPG (5 micromol L-1) depressed the recurrent IPSP, an effect prevented by the selective antagonist AIDA (500 micromol L-1). The depression by DHPG was use-independent and could be partly counteracted by increasing stimulus strength. Paired pulse depression observed at <or=50-ms intervals was blocked by DHPG in an AIDA-sensitive manner. These results suggest that, in the presence of DHPG, smaller recurrent IPSPs can contribute to the excitatory action of mGluR activation on spinal networks, including the generation of synchronous oscillations recorded from motoneurons.
Collapse
Affiliation(s)
- Cristina Marchetti
- Neurobiology Sector and Istituto Nazionale di Fisica della Materia Unit, International School for Advanced Studies (SISSA), Via Beirut 4, 34014, Trieste, Italy
| | | | | |
Collapse
|