1
|
Lee-Confer JS, Kulig K, Powers CM. Constraining the arms during a slip perturbation results in a higher fall frequency in young adults. Hum Mov Sci 2022; 86:103016. [DOI: 10.1016/j.humov.2022.103016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/13/2022] [Accepted: 10/03/2022] [Indexed: 11/04/2022]
|
2
|
Toth AL, Fenrich KK, Jones KE, Misiaszek JE. Coupling of single cutaneous afferents in the hand with ankle muscles, and their response to rapid light touch displacements. J Neurophysiol 2022; 127:1040-1053. [PMID: 35320053 DOI: 10.1152/jn.00280.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Light touch reduces sway during standing. Unexpected displacement of a light touch reference at the finger can produce rapid responses in ankle muscles when standing, suggesting cutaneous receptors in the hand are functionally coupled with ankle muscles. Using microneurography in the median nerve, we tested the hypotheses: 1) that cutaneous afferent activity of mechanoreceptors of the hand would modulate electromyographic (EMG) activity of ankle muscles, and 2) that displacement of a light touch contact across a receptor's sensory territory would be encoded in the afferent activity. Spike-triggered averaging of EMG activity of tibialis anterior (TA) and soleus (SOL) demonstrated thirty-four of forty-two (81%) cutaneous afferents recorded modulated activity of ankle muscles with latencies between 40 to 119 ms. Cutaneous afferents of all types (slow and fast adapting, types I and II) demonstrated responses in TA and SOL, in both the ipsilateral and contralateral leg. Activity from eleven cutaneous afferents were recorded while a light touch contact was displaced across their receptive fields. Afferent activity increased with stimulus onset and remained elevated for the stimulus duration for all afferents recorded. These results suggest cutaneous afferents from the hand consistently form connections with motor pools of the leg at latencies implicating spinal pathways. In addition, the same population of afferents is readily excited by the displacement of a light touch contact. Therefore, cutaneous receptors of the hand can be recruited and utilized to alter motoneuron pool excitability in muscles important to balance control, at latencies relevant for rapid balance responses.
Collapse
Affiliation(s)
- Aidan L Toth
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Keith K Fenrich
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Kelvin E Jones
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.,Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - John E Misiaszek
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
3
|
Cano Porras D, Jacobs JV, Inzelberg R, Bahat Y, Zeilig G, Plotnik M. Patterns of whole-body muscle activations following vertical perturbations during standing and walking. J Neuroeng Rehabil 2021; 18:75. [PMID: 33957953 PMCID: PMC8101216 DOI: 10.1186/s12984-021-00836-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 02/10/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Falls commonly occur due to losses of balance associated with vertical body movements (e.g. reacting to uneven ground, street curbs). Research, however, has focused on horizontal perturbations, such as forward and backward translations of the standing surface. This study describes and compares muscle activation patterns following vertical and horizontal perturbations during standing and walking, and investigates the role of vision during standing postural responses. METHODS Fourteen healthy participants (ten males; 27±4 years-old) responded to downward, upward, forward, and backward perturbations while standing and walking in a virtual reality (VR) facility containing a moveable platform with an embedded treadmill; participants were also exposed to visual perturbations in which only the virtual scenery moved. We collected bilateral surface electromyography (EMG) signals from 8 muscles (tibialis anterior, rectus femoris, rectus abdominis, external oblique, gastrocnemius, biceps femoris, paraspinals, deltoids). Parameters included onset latency, duration of activation, and activation magnitude. Standing perturbations comprised dynamic-camera (congruent), static-camera (incongruent) and eyes-closed sensory conditions. ANOVAs were used to compare the effects of perturbation direction and sensory condition across muscles. RESULTS Vertical perturbations induced longer onset latencies and shorter durations of activation with lower activation magnitudes in comparison to horizontal perturbations (p<0.0001). Downward perturbations while standing generated earlier activation of anterior muscles to facilitate flexion (for example, p=0.0005 and p=0.0021 when comparing the early activators, rectus femoris and tibialis anterior, to a late activator, the paraspinals), whereas upward perturbations generated earlier activation of posterior muscles to facilitate extension (for example, p<0.0001 and p=0.0004, when comparing the early activators, biceps femoris and gastrocnemius, to a late activator, the rectus abdominis). Static-camera conditions induced longer onset latencies (p=0.0085 and p<0.0001 compared to eyes-closed and dynamic-camera conditions, respectively), whereas eyes-closed conditions induced longer durations of activation (p=0.0001 and p=0.0008 compared to static-camera and dynamic-camera, respectively) and larger activation magnitudes. During walking, downward perturbations promptly activated contralateral trunk and deltoid muscles (e.g., p=0.0036 for contralateral deltoid versus a late activator, the ipsilateral tibialis anterior), and upward perturbations triggered early activation of trunk flexors (e.g., p=0.0308 for contralateral rectus abdominis versus a late activator, the ipsilateral gastrocnemius). Visual perturbations elicited muscle activation in 67.7% of trials. CONCLUSION Our results demonstrate that vertical (vs. horizontal) perturbations generate unique balance-correcting muscle activations, which were consistent with counteracting vertical body extension induced by downward perturbations and vertical body flexion induced by upward perturbations. Availability of visual input appears to affect response efficiency, and incongruent visual input can adversely affect response triggering. Our findings have clinical implications for the design of robotic exoskeletons (to ensure user safety in dynamic balance environments) and for perturbation-based balance and gait rehabilitation.
Collapse
Affiliation(s)
- Desiderio Cano Porras
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Perception and Action in Complex Environments, Marie Curie International Training Network, European Union's Horizons 2020 Research and Innovation Program, Brussels, Belgium.,Brightlands Institute for Smart Society-BISS, Maastricht University, Maastricht, The Netherlands
| | - Jesse V Jacobs
- Rehabilitation and Movement Science, University of Vermont, Burlington, VT, USA
| | - Rivka Inzelberg
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Applied Mathematics and Computer Science, The Weizmann Institute of Science, Rehovot, Israel
| | - Yotam Bahat
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Ramat Gan, Israel
| | - Gabriel Zeilig
- Department of Neurological Rehabilitation, Sheba Medical Center, Tel HaShomer, Ramat Gan, Israel.,Department of Physical and Rehabilitation Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Meir Plotnik
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Ramat Gan, Israel. .,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel. .,Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
4
|
Age-Related Differences in Arm and Trunk Responses to First and Repeated Exposure to Laterally Induced Imbalances. Brain Sci 2020; 10:brainsci10090574. [PMID: 32825342 PMCID: PMC7564542 DOI: 10.3390/brainsci10090574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 11/24/2022] Open
Abstract
The objective of this study was to examine age-related differences in arm and trunk responses during first and repeated step induced balance perturbations. Young and older adults received 10 trials of unpredictable lateral platform translations. Outcomes included maximum arm and trunk displacement within 1 s of perturbation and at first foot lift off (FFLO), arm and neck muscle activity as recorded using electromyography (EMG), initial step type, balance confidence, and percentage of harness-assisted trials. Compared to young adults, older adults demonstrated greater arm and trunk angular displacements during the first trial, which were present at FFLO and negatively associated with balance confidence. Unlike young adults, recovery steps in older adults were directed towards the fall with a narrowed base of support. Over repeated trials, rapid habituation of first-trial responses of bilateral arm and trunk displacement and EMG amplitude was demonstrated in young adults, but was absent or limited in older adults. Older adults also relied more on harness assistance during balance recovery. Exaggerated arm and trunk responses to sudden lateral balance perturbations in older adults appear to influence step type and balance recovery. Associations of these persistently amplified movements with an increased reliance on harness assistance suggest that training to reduce these deficits could have positive effects in older adults with and without neurological disorders.
Collapse
|
5
|
Age-related changes in the capacity to select early-onset upper-limb reactions to either recover balance or protect against impact. Exp Gerontol 2019; 125:110676. [DOI: 10.1016/j.exger.2019.110676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/21/2019] [Accepted: 07/29/2019] [Indexed: 11/18/2022]
|
6
|
Major MJ. Fall Prevalence and Contributors to the Likelihood of Falling in Persons With Upper Limb Loss. Phys Ther 2019; 99:377-387. [PMID: 30561742 PMCID: PMC6684228 DOI: 10.1093/ptj/pzy156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 10/20/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Arms are important for locomotor stability and preventing falls by controlling whole-body angular momentum, redirecting the body's center of mass, and providing support to arrest descent. Hence, upper limb loss (ULL) can increase fall risk. However, the prevalence of falls and factors that influence fall risk have not previously been reported for people with ULL. OBJECTIVE This study quantified fall prevalence in persons with ULL at or proximal to the wrist and identified clinical factors that contributed to the likelihood of falling. DESIGN This was a cross-sectional study. METHODS Factors including body and health characteristics, activity level, fall history, prosthesis use, and balance confidence were determined for persons with ULL proximal to the wrist using an online survey. Logistic regression analyses assessed the contribution of these factors to the classification of fallers (≥2 falls in previous year) and nonfallers. RESULTS A percentage (28.6%) of participants (n = 105) reported experiencing 2 or more falls in the past year. The regression model (R2 = 0.473) correctly classified 84.5% of cases and indicated that increased likelihood of falling was significantly influenced by reduced balance confidence, use of upper limb prostheses, and reduced physical capabilities. LIMITATIONS Data were collected online from a convenience sample, and fall classification was based on retrospective data. CONCLUSIONS Falls in persons with ULL are prevalent, suggesting that clinicians should use screening methods to identify at-risk individuals. Balance confidence, use of upper limb prostheses, and perceived physical capabilities could be useful screening metrics. Research is warranted to better understand the factors that underlie fall risk in persons with ULL and the efficacy of therapeutic interventions capable of mitigating fall risk.
Collapse
Affiliation(s)
- Matthew J Major
- Department of Physical Medicine and Rehabilitation, Northwestern University, 680 N Lake Shore Dr, Suite 1100, Chicago, IL 60611 (USA); and Jesse Brown VA Medical Center, Chicago, Illinois
| |
Collapse
|
7
|
Teixeira LA, Coutinho JDFS, Coelho DB. Regulation of dynamic postural control to attend manual steadiness constraints. J Neurophysiol 2018; 120:693-702. [DOI: 10.1152/jn.00941.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In daily living activities, performance of spatially accurate manual movements in upright stance depends on postural stability. In the present investigation, we aimed to evaluate the effect of the required manual steadiness (task constraint) on the regulation of dynamic postural control. A single group of young participants ( n = 20) were evaluated in the performance of a dual posturo-manual task of balancing on a platform oscillating in sinusoidal translations at 0.4-Hz (low) or 1-Hz (high) frequencies while stabilizing a cylinder on a handheld tray. Manual task constraint was manipulated by comparing the conditions of keeping the cylinder stationary on its flat or round side, corresponding to low and high manual task constraints, respectively. Results showed that in the low oscillation frequency the high manual task constraint led to lower oscillation amplitudes of the head, center of mass, and tray, in addition to higher relative phase values between ankle/hip-shoulder oscillatory rotations and between center of mass/center of pressure-feet oscillations as compared with values observed in the low manual task constraint. Further analyses showed that the high manual task constraint also affected variables related to both postural (increased amplitudes of center of pressure oscillation) and manual (increased amplitude of shoulder rotations) task components in the high oscillation frequency. These results suggest that control of a dynamic posturo-manual task is modulated in distinct parameters to attend the required manual steadiness in a complex and flexible way. NEW & NOTEWORTHY We evaluated dynamic postural control on a platform oscillating in sinusoidal translations at different frequencies while performing a manual task with low or high steadiness constraints. Results showed that high manual task constraint led to modulation of metric and coordination variables associated with greater postural stability. Our findings suggest that motor control is regulated in an integrative mode at the posturo-manual task level, with reciprocal interplay between the postural and manual components.
Collapse
Affiliation(s)
- Luis Augusto Teixeira
- Human Motor Systems Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | | | - Daniel Boari Coelho
- Human Motor Systems Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
- Biomedical Engineering, Federal University of ABC, São Bernardo do Campo, São Paulo, Brazil
| |
Collapse
|
8
|
Martelli D, Vashista V, Micera S, Agrawal SK. Direction-Dependent Adaptation of Dynamic Gait Stability Following Waist-Pull Perturbations. IEEE Trans Neural Syst Rehabil Eng 2016; 24:1304-1313. [DOI: 10.1109/tnsre.2015.2500100] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Bolton DAE. The role of the cerebral cortex in postural responses to externally induced perturbations. Neurosci Biobehav Rev 2015; 57:142-55. [PMID: 26321589 DOI: 10.1016/j.neubiorev.2015.08.014] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 08/09/2015] [Accepted: 08/25/2015] [Indexed: 10/23/2022]
Abstract
The ease with which we avoid falling down belies a highly sophisticated and distributed neural network for controlling reactions to maintain upright balance. Although historically these reactions were considered within the sub cortical domain, mounting evidence reveals a distributed network for postural control including a potentially important role for the cerebral cortex. Support for this cortical role comes from direct measurement associated with moments of induced instability as well as indirect links between cognitive task performance and balance recovery. The cerebral cortex appears to be directly involved in the control of rapid balance reactions but also setting the central nervous system in advance to optimize balance recovery reactions even when a future threat to stability is unexpected. In this review the growing body of evidence that now firmly supports a cortical role in the postural responses to externally induced perturbations is presented. Moreover, an updated framework is advanced to help understand how cortical contributions may influence our resistance to falls and on what timescale. The implications for future studies into the neural control of balance are discussed.
Collapse
Affiliation(s)
- D A E Bolton
- School of Psychology, Queen's University Belfast, Belfast BT7 1NN, Northern Ireland, UK.
| |
Collapse
|
10
|
Forero J, Misiaszek JE. The amplitude of interlimb cutaneous reflexes in the leg is influenced by fingertip touch and vision during treadmill locomotion. Exp Brain Res 2015; 233:1773-82. [DOI: 10.1007/s00221-015-4250-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/06/2015] [Indexed: 11/28/2022]
|
11
|
Forero J, Misiaszek JE. Balance-corrective responses to unexpected perturbations at the arms during treadmill walking. J Neurophysiol 2014; 112:1790-800. [DOI: 10.1152/jn.00719.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The arms have been shown to be involved in the regulation of balance during walking. The use of a walking aid enhances balance by increasing the base of support and reducing the load on the legs by partly transferring it to the arms. However, when actively engaged during a balance task, perturbations to the arms can destabilize balance. Previous studies have investigated postural adjustments associated with focal arm movements during standing and walking. However, balance-corrective reactions to unexpected perturbations to the arms during walking have not been well studied. In the present study, subjects walked on a treadmill while grasping a pair of handles when sudden perturbations were delivered by displacing the handles in the forward or backward direction. Instructing subjects to oppose the displacement of the handles resulted in strong responses in the arms that were accompanied by activation of muscles in the legs, comparable to those observed in other balance disturbance studies. Conversely, when subjects were instructed to allow the handles to move when displaced, no responses were observed in the arms. However, similar responses were observed in the legs whether subjects opposed the displacement of the handles or not when perturbations were applied at heel strike. The results from this study show that balance reactions can be elicited in the legs in response to perturbations applied at the arms, and that the expression of these responses is affected by the task engaged in by the arms.
Collapse
Affiliation(s)
- Juan Forero
- Department of Occupational Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada; and
| | - John E. Misiaszek
- Department of Occupational Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada; and
- Centre for Neuroscience, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
12
|
The effect of light touch on the amplitude of cutaneous reflexes in the arms during treadmill walking. Exp Brain Res 2014; 232:2967-76. [DOI: 10.1007/s00221-014-3979-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 04/26/2014] [Indexed: 10/25/2022]
|
13
|
Van Ooteghem K, Lakhani B, Akram S, Miyasike Da Silva V, McIlroy WE. Time to disengage: holding an object influences the execution of rapid compensatory reach-to-grasp reactions for recovery from whole-body instability. Exp Brain Res 2013; 231:191-9. [PMID: 23990081 DOI: 10.1007/s00221-013-3682-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 08/07/2013] [Indexed: 11/29/2022]
Abstract
Rapid reach-to-grasp (RTG) reactions are important for balance recovery. Despite the benefit of having hands free to regain balance, people do not always release a handheld object. We investigated whether reluctance to release is related to central nervous system (CNS) processing delays that occur when the initial reaction is to drop the object rather than RTG. Young adults sat in a custom-designed chair that tilted backwards. Participants regained balance by reaching to a handle with hands free or while holding onto (1) a chair-fixed object or (2) a SMALL or LARGE free-moving object (unbreakable plastic tubes). EMG was collected from the upper limb to determine onset of reaction. Kinematic data from a digitized wrist marker were used to determine movement time. 9 of 10 participants released the object in every trial. Extensor digitorum onset occurred significantly later than anterior deltoid onset in all conditions. LARGE object release induced further delays in extensor onset while both SMALL and LARGE object release increased response and movement time. Object disengagement led to delays in perturbation-evoked, RTG reactions, particularly in the focal muscle (extensor digitorum) and when the objects' properties posed greater risk for a failed RTG response. We propose that time required for cognitive disengagement accounts for the observed delays. This study offers a potential explanation for the tendency to avoid disengaging from a handheld object during balance recovery. Results also provide insight into the challenges imposed upon the CNS during temporally urgent movements.
Collapse
Affiliation(s)
- K Van Ooteghem
- Department of Kinesiology, University of Waterloo, 200 University Ave. W., Waterloo, ON, N2L 3G1, Canada,
| | | | | | | | | |
Collapse
|
14
|
Forero J, Misiaszek JE. The contribution of light touch sensory cues to corrective reactions during treadmill locomotion. Exp Brain Res 2013; 226:575-84. [PMID: 23483209 DOI: 10.1007/s00221-013-3470-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 02/25/2013] [Indexed: 10/27/2022]
Abstract
The arms play an important role in balance regulation during walking. In general, perturbations delivered during walking trigger whole-body corrective responses. For instance, holding to stable handles can largely attenuate and even suppress responses in the leg muscles to perturbations during walking. Particular attention has been given to the influence of light touch on postural control. During standing, lightly touching a stable contact greatly reduces body sway and enhances corrective responses to postural perturbations, whereas light touch during walking allows subjects to continue to walk on a treadmill with the eyes closed. We hypothesized that in the absence of mechanical support from the arms, sensory cues from the hands would modulate responses in the legs to balance disturbing perturbations delivered at the torso during walking. To test this, subjects walked on a treadmill while periodically being pulled backwards at the waist while walking. The amplitude of the responses evoked in tibialis anterior to these perturbations was compared across 4 test conditions, in a 2 × 2 design. Subjects either (a) lightly touched or (b) did not touch a stable contact, while the eyes were (c) open or (d) closed. Allowing the subjects to touch a stable contact resulted in a reduction in the amount of fore-aft oscillation of the body on the treadmill, which was accompanied by a reduction in the ongoing electromyographic activity in both tibialis anterior and soleus during undisturbed walking. In contrast, the provision of touch resulted in an increase in the amplitude of the evoked responses in tibialis anterior to the backward perturbations that was more evident when subjects walked with the eyes closed. These results indicate that light touch provides a sensory cue that can be used to assist in stabilizing the body while walking. In addition, the sensory information provided by light touch contributes to the regulation of corrective reactions initiated by balance disturbances encountered during walking.
Collapse
Affiliation(s)
- Juan Forero
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, AB, T6G 2G4, Canada
| | | |
Collapse
|
15
|
Bolton DAE, Misiaszek JE. Compensatory balance reactions during forward and backward walking on a treadmill. Gait Posture 2012; 35:681-4. [PMID: 22225851 DOI: 10.1016/j.gaitpost.2011.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 11/28/2011] [Accepted: 12/01/2011] [Indexed: 02/02/2023]
Abstract
Previous work suggests that balance perturbations to the body opposing the direction of progression during walking lead to larger amplitude corrective reactions than perturbations concurrent with walking direction. To test this hypothesis, subjects received forward and backward perturbations applied to the pelvis through a padded harness, while walking forwards or backwards on a treadmill. Contrary to our hypothesis, the greatest responses were associated with backward perturbations regardless of the direction of walking.
Collapse
Affiliation(s)
- D A E Bolton
- Centre for Neuroscience, University of Alberta, Canada
| | | |
Collapse
|
16
|
State-dependent corrective reactions for backward balance losses during human walking. Hum Mov Sci 2011; 30:1210-24. [DOI: 10.1016/j.humov.2011.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 03/03/2011] [Accepted: 03/07/2011] [Indexed: 11/22/2022]
|
17
|
Barron J, Guidon M. Grip strength and functional balance in community-dwelling older women. INTERNATIONAL JOURNAL OF THERAPY AND REHABILITATION 2011. [DOI: 10.12968/ijtr.2011.18.11.622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background: Effective detection and treatment of balance impairment in older people is a matter of clinical urgency. 4 screening tool for impaired balance is required, as is clarity regarding the role of muscle strength in balance control. Methods: This observational study examined the relationship between grip strength and balance in 40 community-dwelling women aged 65-95 years. Measures included grip strength, Functional Reach test, Single Leg Stance Test, Timed Up and Go test and the Berg Balance Scale. Correlation analyses were used to investigate relationships between the variables. Findings: Significant correlations were found between grip strength and each of the balance measures. The strongest correlation (r=0.55, P<0.001) was found between right grip strength and the Berg Balance Scale. The weakest correlation (r=-0.36, P=0.012) was between left grip strength and the Timed Up and Go test. Grip strength accounted for only 14%-31% of the variance in balance test scores Conclusions: The association between grip strength and balance was not sufficiently robust for grip strength to be recommended as a screening tool for balance impairment in older people.
Collapse
Affiliation(s)
- Joan Barron
- Stroke and Medical Rehwabilitation Unit, Letterkenny General Hospital, County Donegal, Ireland
| | - Marie Guidon
- Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
18
|
Shapiro A, Melzer I. Balance perturbation system to improve balance compensatory responses during walking in old persons. J Neuroeng Rehabil 2010; 7:32. [PMID: 20630113 PMCID: PMC2911463 DOI: 10.1186/1743-0003-7-32] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 07/15/2010] [Indexed: 11/24/2022] Open
Abstract
Ageing commonly disrupts the balance control and compensatory postural responses that contribute to maintaining balance and preventing falls during perturbation of posture. This can lead to increased risk of falling in old adults (65 years old and over). Therefore, improving compensatory postural responses during walking is one of the goals in fall prevention programs. Training is often used to achieve this goal. Most fall prevention programs are usually directed towards improving voluntary postural control. Since compensatory postural responses triggered by a slip or a trip are not under direct volitional control these exercises are less expected to improve compensatory postural responses due to lack of training specificity. Thus, there is a need to investigate the use balance perturbations during walking to train more effectively compensatory postural reactions during walking. This paper describes the Balance Measure & Perturbation System (BaMPer System) a system that provides small, controlled and unpredictable perturbations during treadmill walking providing valuable perturbation, which allows training compensatory postural responses during walking which thus hypothesize to improve compensatory postural responses in older adults.
Collapse
Affiliation(s)
- Amir Shapiro
- Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | |
Collapse
|
19
|
Sasada S, Tazoe T, Nakajima T, Zehr EP, Komiyama T. Effects of leg pedaling on early latency cutaneous reflexes in upper limb muscles. J Neurophysiol 2010; 104:210-7. [PMID: 20445040 DOI: 10.1152/jn.00774.2009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The functional coupling of neural circuits between the upper and lower limbs involving rhythmic movements is of interest to both motor control research and rehabilitation science. This coupling can be detected by examining the effect of remote rhythmic limb movement on the modulation of reflex amplitude in stationary limbs. The present study investigated the extent to which rhythmic leg pedaling modulates the amplitude of an early latency (peak 30-70 ms) cutaneous reflex (ELCR) in the upper limb muscles. Thirteen neurologically intact volunteers performed leg pedaling (60 or 90 rpm) while simultaneously contracting their arm muscles isometrically. Control experiments included isolated isometric contractions and discrete movements of the leg. ELCRs were evoked by stimulation of the superficial radial nerve with a train of rectangular pulses (three pulses at 333 Hz, intensity 2.0- to 2.5-fold perceptual threshold). Reflex amplitudes were significantly increased in the flexor carpi radialis and posterior deltoid and significantly decreased in the biceps brachii muscles during leg pedaling compared with that during stationary isometric contraction of the lower leg muscles. This effect was also sensitive to cadence. No significant modulation was seen during the isometric contractions or discrete movements of the leg. Additionally, there was no phase-dependent modulation of the ELCR. These findings suggest that activation of the rhythm generating system of the legs affects the excitability of the early latency cutaneous reflex pathways in the upper limbs.
Collapse
Affiliation(s)
- Syusaku Sasada
- United Graduate School of Education, Tokyo Gakugei University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
20
|
Pijnappels M, Kingma I, Wezenberg D, Reurink G, van Dieën JH. Armed against falls: the contribution of arm movements to balance recovery after tripping. Exp Brain Res 2009; 201:689-99. [DOI: 10.1007/s00221-009-2088-7] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 11/04/2009] [Indexed: 11/28/2022]
|
21
|
Klimstra MD, Thomas E, Stoloff RH, Ferris DP, Zehr EP. Neuromechanical considerations for incorporating rhythmic arm movement in the rehabilitation of walking. CHAOS (WOODBURY, N.Y.) 2009; 19:026102. [PMID: 19566262 DOI: 10.1063/1.3147404] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We have extensively used arm cycling to study the neural control of rhythmic movements such as arm swing during walking. Recently rhythmic movement of the arms has also been shown to enhance and shape muscle activity in the legs. However, restricted information is available concerning the conditions necessary to maximally alter lumbar spinal cord excitability. Knowledge on the neuromechanics of a task can assist in the determination of the type, level, and timing of neural signals, yet arm swing during walking and arm cycling have not received a detailed neuromechanical comparison. The purpose of this research was to provide a combined neural and mechanical measurement approach that could be used to assist in the determination of the necessary and sufficient conditions for arm movement to assist in lower limb rehabilitation after stroke and spinal cord injury. Subjects performed three rhythmic arm movement tasks: (1) cycling (cycle); (2) swinging while standing (swing); and (3) swinging while treadmill walking (walk). We hypothesized that any difference in neural control between tasks (i.e., pattern of muscle activity) would reflect changes in the mechanical constraints unique to each task. Three-dimensional kinematics were collected simultaneously with force measurement at the hand and electromyography from the arms and trunk. All data were appropriately segmented to allow a comparison between and across conditions and were normalized and averaged to 100% movement cycle based on shoulder excursion. Separate mathematical principal components analysis of kinematic and neural variables was performed to determine common task features and muscle synergies. The results highlight important neural and mechanical features that distinguish differences between tasks. For example, there are considerable differences in the anatomical positions of the arms during each task, which relate to the moments experienced about the elbow and shoulder. Also, there are differences between tasks in elbow flexion/extension kinematics alongside differential muscle activation profiles. As well, mechanical assistance and constraints during all tasks could affect muscle recruitment and the functional role of muscles. Overall, despite neural and mechanical differences, the results are consistent with conserved common central motor control mechanisms operational for cycle, walk, and swing but appropriately sculpted to demands unique to each task. However, changing the mechanical parameters could affect the role of afferent feedback altering neural control and the coupling to the lower limbs.
Collapse
Affiliation(s)
- Marc D Klimstra
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, British Columbia V8W 3P1, Canada
| | | | | | | | | |
Collapse
|
22
|
Marigold DS, Misiaszek JE. Whole-Body Responses: Neural Control and Implications for Rehabilitation and Fall Prevention. Neuroscientist 2008; 15:36-46. [PMID: 19218229 DOI: 10.1177/1073858408322674] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Humans are one of the unique species that utilize bipedal gait to ambulate in our environment. Despite this fact, coordination of the arms with the legs and the rest of body is essential for many daily activities. As such, whole-body responses have emerged as the preferred strategy following perturbations to balance during both standing and walking. Complex neural circuitry may allow for this coordination through the use of propriospinal pathways linking lumbar and cervical pattern generators in the spinal cord, with supraspinal centers altering this control depending on the context of the situation. Based on these findings, we argue that whole-body reactions may be exploited for rehabilitation purposes. Preliminary results have indicated training programs designed to elicit whole-body responses are effective in reducing falls and improving functional mobility in older adults with and without neurological impairment.
Collapse
Affiliation(s)
- Daniel S. Marigold
- Département de Physiologie, Université de Montréal,
Montréal, Québec, Canada
| | - John E. Misiaszek
- Centre for Neuroscience and Department of Occupational
Therapy, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
23
|
Lamont EV, Zehr EP. Earth-referenced handrail contact facilitates interlimb cutaneous reflexes during locomotion. J Neurophysiol 2007; 98:433-42. [PMID: 17522173 DOI: 10.1152/jn.00002.2007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to investigate whether the gating of interlimb cutaneous reflexes is altered by holding an earth-referenced handrail during locomotion. In the first experiment, subjects performed locomotor tasks of varying difficulty (level walking, incline walking, and stair climbing) while lightly holding an earth-referenced rail. In the second experiment, the extent of rail contact and nature of the rail stability (e.g., fixed vs. mobile rail) were varied while subjects performed incline walking. Cutaneous reflexes were evoked by delivering trains of electrical stimulation to the sural nerve at the ankle. EMG data were collected continuously from muscles in the upper and lower limbs and trunk. Results showed that modulation of reflexes across the body changed when the rail was held. Most interestingly, a facilitatory reflex in the shoulder extensor posterior deltoid emerged during swing phase only when subjects held a rail. This facilitatory reflex was largest during the more challenging tasks of incline walking and stair climbing, A similar reflex facilitation was observed in the elbow extensor triceps brachii. The observed facilitation of reflexes in triceps brachii and posterior deltoid was specifically expressed only when subjects held an earth-referenced rail. This suggests that interlimb reflexes in arm extensors may be enhanced to make use of a supportive handrail for stability during gait. Therefore, holding a rail may cause global changes in reflex thresholds across the body that may have widespread functional relevance for assisting in the maintenance of postural stability during locomotion.
Collapse
Affiliation(s)
- Erin V Lamont
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC, Canada
| | | |
Collapse
|
24
|
Krauss EM, Misiaszek JE. Phase-specific modulation of the soleus H-reflex as a function of threat to stability during walking. Exp Brain Res 2007; 181:665-72. [PMID: 17487475 DOI: 10.1007/s00221-007-0962-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Accepted: 04/16/2007] [Indexed: 10/23/2022]
Abstract
The purpose of the present study was to determine whether the soleus H-reflex is modulated with changes in the level of postural threat during walking. H-reflexes were tested at four points in the step cycle when subjects walked in 5 conditions representing different levels of postural threat. H-reflexes were significantly increased in amplitude at heelstrike in conditions of increased postural threat compared to normal treadmill walking with only minimal changes in H-reflex amplitude at other step cycle points. Conversely when subjects walked while holding stable handles, to decrease postural threat, the amplitude of the H-reflex was significantly smaller at heelstrike and midstance compared to normal walking. The changes in the amplitude of the H-reflex between walking conditions were not accompanied by changes in ongoing electromyographic activity or movements. Our findings suggest that the amplitude of the reflex is adjusted in a phase-specific manner, related to the postural uncertainty of the task. These adaptations in reflex amplitude may be related to changes in the amplitude of corrective responses following perturbations during walking. The adaptations in the amplitude of the H-reflex specific to heelstrike may be important in the control of foot placement at ground contact.
Collapse
Affiliation(s)
- E M Krauss
- Department of Occupational Therapy and Centre for Neuroscience, University of Alberta, 2-64 Corbett Hall, T6G 2G4 Edmonton, AB, Canada
| | | |
Collapse
|
25
|
Abstract
Many different corrective reactions can be used to regain balance during walking. However, the nervous system does not hesitate to decide which reaction will be used. A rule-based finite state control system that preselects appropriate reactions is a practical way to simplify this task. The proposed model suggests that much of this is achieved by groups of spinal interneurons.
Collapse
Affiliation(s)
- John E Misiaszek
- Sensory-Motor Research Laboratory, Department of Occupational Therapy and Centre for Neuroscience, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
26
|
Haridas C, Zehr EP, Misiaszek JE. Context-Dependent Modulation of Interlimb Cutaneous Reflexes in Arm Muscles as a Function of Stability Threat During Walking. J Neurophysiol 2006; 96:3096-103. [PMID: 17005610 DOI: 10.1152/jn.00746.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cutaneous reflexes evoked in the muscles of the arms with electrical stimulation of nerves of the foot (“interlimb reflexes”) are observed during walking. These reflexes have been suggested to coordinate the actions of the legs and arms when walking is disturbed. Recently, we showed that cutaneous reflexes evoked in the leg muscles after stimulation at the foot are modulated according to the level of postural threat during walking. We hypothesized that the amplitude of interlimb cutaneous reflexes would similarly be modulated when subjects walk in unstable environments. Subjects walked on a treadmill under four walking conditions: 1) normal; 2) normal with unpredictable anterior–posterior (AP) perturbations; 3) arms crossed; and 4) arms crossed with unpredictable AP perturbations. Interlimb reflexes evoked from electrical stimulation of the right superficial peroneal or sural nerves were recorded bilaterally, at four points of the step cycle. These reflexes were compared between conditions in which the arms were moving in a similar manner: 1) normal versus AP walking and 2) arms crossed versus arms crossed with AP perturbations. Differences in reflex amplitudes between arms-crossed conditions were observed in most upper limb muscles when subjects were perturbed while walking compared with undisturbed walking. This effect was less apparent when the arms were swinging freely. The results indicate that the strength of interlimb connections is influenced by the level of postural threat (i.e., the context of the behavior), thereby suggesting that these reflexes serve a functional link between the legs and arms during locomotion.
Collapse
Affiliation(s)
- Carlos Haridas
- Department of Occupational Therapy, Sensory-Motor Research Laboratory, 2-64 Corbett Hall, University of Alberta, Edmonton, AB, Canada T6G 2G4
| | | | | |
Collapse
|
27
|
Lamont EV, Zehr EP. Task-specific modulation of cutaneous reflexes expressed at functionally relevant gait cycle phases during level and incline walking and stair climbing. Exp Brain Res 2006; 173:185-92. [PMID: 16821052 DOI: 10.1007/s00221-006-0586-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Accepted: 06/02/2006] [Indexed: 11/25/2022]
Abstract
Reflexes are exquisitely sensitive to the motor task that is being performed at the time they are evoked; in other words, they are "task-dependent". The purpose of this study was to investigate the extent to which the pattern of reflex modulation is conserved across three locomotor tasks that differ in muscle activity, joint kinematics, and stability demands. Subjects performed continuous level and incline walking on a treadmill and stair climbing on a stepping mill. Cutaneous reflexes were evoked by delivering trains of electrical stimulation to the sural nerve at the ankle at an intensity of two times the radiating threshold. Electromyographic (EMG) recordings were collected continuously from muscles in the arms, legs and trunk. Results showed that middle-latency reflex modulation patterns were generally conserved across the three locomotor tasks with a few notable exceptions related to specific functional requirements. For example, a reflex reversal was observed for tibialis anterior during stair climbing, which may be indicative of a specific adaptation to the task constraints. Overall our data suggest that the underlying neural mechanisms involved in coordinating level walking can be modified to also coordinate other locomotor tasks such as incline walking and stair climbing. Therefore, there may be considerable overlap in the neural control of different forms of locomotion.
Collapse
Affiliation(s)
- Erin V Lamont
- Centre for Neuroscience, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
28
|
Haridas C, Zehr EP, Misiaszek JE. Postural uncertainty leads to dynamic control of cutaneous reflexes from the foot during human walking. Brain Res 2005; 1062:48-62. [PMID: 16248988 DOI: 10.1016/j.brainres.2005.09.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Revised: 09/14/2005] [Accepted: 09/24/2005] [Indexed: 10/25/2022]
Abstract
Cutaneous reflexes evoked by stimulation of nerves innervating the foot are modulated in a phase-dependent manner during locomotion. The pattern of modulation of these reflexes has been suggested to indicate a functional role of cutaneous reflexes in assisting to maintain stability during walking. We hypothesized that if cutaneous reflexes assist in maintaining stability during gait, then these reflexes should be modulated in a context-dependent manner when subjects are asked to walk in an environment in which stability is challenged. To do this, we asked subjects to walk on a treadmill under five conditions: (1) normally, (2) with the arms crossed, (3) while receiving unpredictable anterior-posterior (AP) perturbations, (4) with the arms crossed while receiving unpredictable AP perturbations, and (5) with the hands holding onto fixed handles. Cutaneous reflexes arising from electrical stimulation of the superficial peroneal (SP; relevant to stumbling) or distal tibial (TIB; relevant to ground contact sensation) nerves were recorded bilaterally, at four points in the step cycle. Reflexes evoked with SP nerve stimulation showed marked facilitation during the most unstable walking condition in 4 of the 7 muscles tested. SP nerve-evoked reflexes in the muscles of the contralateral leg also showed suppression during the most stable walking condition. Reflexes evoked with TIB nerve stimulation were less affected by changes in the walking task. We argue that the specific adaptation of cutaneous reflexes observed with SP nerve stimulation supports the hypothesis that cutaneous reflexes from the foot contribute to the maintenance of stability during walking.
Collapse
Affiliation(s)
- Carlos Haridas
- Centre for Neuroscience, University of Alberta, Edmonton, AB, Canada
| | | | | |
Collapse
|