1
|
Sato Y, Takanaka S, Izumi SI. Alteration of Interhemispheric Inhibition in Patients With Lateral Epicondylalgia. THE JOURNAL OF PAIN 2024; 25:104440. [PMID: 38065465 DOI: 10.1016/j.jpain.2023.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 01/12/2024]
Abstract
Patients with lateral epicondylalgia (LE) show alterations in the primary motor cortex (M1) contralateral to the affected side. Cortical alterations have been investigated by measuring intracortical facilitation/inhibition; however, their association with pain remains controversial. Furthermore, no studies have investigated changes in interhemispheric inhibition (IHI). IHI can be assessed using the ipsilateral silent period (iSP) known as the temporary inhibition of electromyographic activity evoked by transcranial magnetic stimulation in the ipsilateral M1 of the contracting muscle. To better understand the relationship between cortical alterations and pain in LE, this observational study investigated the relationship between iSP and pain in LE. Twenty-seven healthy volunteers and 21 patients with LE were recruited. The duration of iSP in the extensor carpi radialis brevis was measured. The IHI asymmetry ratio was calculated to determine the IHI balance. Pain and disability were scored using the Japanese version of the patient-rated elbow evaluation. We observed increased inhibitory input from the ipsilateral M1 on the affected side to the contralateral M1 in LE. Additionally, the IHI balance correlated with pain severity. Hence, regulating imbalanced IHI can potentially decrease lateral elbow pain in LE. PERSPECTIVE: Patients with lateral epicondylalgia (LE) experience persistent pain and cortical alterations. However, there is no established relationship between cortical alterations and pain. This study demonstrated that the interhemispheric inhibition (IHI) balance is correlated with pain. Regulating imbalanced IHI can potentially decrease lateral elbow pain in patients with LE.
Collapse
Affiliation(s)
- Yosuke Sato
- Course of Rehabilitation, Department of Health Sciences, Tohoku Fukushi University, Aoba-ku, City, Miyagi, Japan; Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai City, Miyagi, Japan
| | - Shun Takanaka
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai City, Miyagi, Japan
| | - Shin-Ichi Izumi
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai City, Miyagi, Japan; Graduate School of Biomedical Engineering, Tohoku University, Sendai City, Miyagi, Japan
| |
Collapse
|
2
|
Tian D, Izumi SI. Different effects of I-wave periodicity repetitive TMS on motor cortex interhemispheric interaction. Front Neurosci 2023; 17:1079432. [PMID: 37457007 PMCID: PMC10349661 DOI: 10.3389/fnins.2023.1079432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Background Activity of the neural circuits in the human motor cortex can be probed using transcranial magnetic stimulation (TMS). Changing TMS-induced current direction recruits different cortical neural circuits. I-wave periodicity repetitive TMS (iTMS) substantially modulates motor cortex excitability through neural plasticity, yet its effect on interhemispheric interaction remains unclear. Objective To explore the modulation of interhemispheric interaction by iTMS applied in different current directions. Materials and Methods Twenty right-handed healthy young volunteers (aged 27.5 ± 5.0 years) participated in this study with three visits. On each visit, iTMS in posterior-anterior/anterior-posterior direction (PA-/AP-iTMS) or sham-iTMS was applied to the right hemisphere, with corticospinal excitability and intracortical facilitation of the non-stimulated left hemisphere evaluated at four timepoints. Ipsilateral silent period was also measured at each timepoint probing interhemispheric inhibition (IHI). Results PA- and AP-iTMS potentiated cortical excitability concurrently in the stimulated right hemisphere. Corticospinal excitability of the non-stimulated left hemisphere increased 10 min after both PA- and AP-iTMS intervention, with a decrease in short-interval intracortical facilitation (SICF) observed in AP-iTMS only. Immediately after the intervention, PA-iTMS tilted the IHI balance toward inhibiting the non-stimulated hemisphere, while AP-iTMS shifted the balance toward the opposite direction. Conclusions Our findings provide systematic evidence on the plastic modulation of interhemispheric interaction by PA- and AP-iTMS. We show that iTMS induces an interhemispheric facilitatory effect, and that PA- and AP-iTMS differs in modulating interhemispheric inhibition.
Collapse
Affiliation(s)
- Dongting Tian
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shin-Ichi Izumi
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Japan
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| |
Collapse
|
3
|
Veldema J, Nowak DA, Bösl K, Gharabaghi A. Hemispheric Differences of 1 Hz rTMS over Motor and Premotor Cortex in Modulation of Neural Processing and Hand Function. Brain Sci 2023; 13:brainsci13050752. [PMID: 37239224 DOI: 10.3390/brainsci13050752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/26/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
INTRODUCTION Non-invasive brain stimulation can modulate both neural processing and behavioral performance. Its effects may be influenced by the stimulated area and hemisphere. In this study (EC no. 09083), repetitive transcranial magnetic stimulation (rTMS) was applied to the primary motor cortex (M1) or dorsal premotor cortex (dPMC) of either the right or left hemisphere, while evaluating cortical neurophysiology and hand function. METHODS Fifteen healthy subjects participated in this placebo-controlled crossover study. Four sessions of real 1 Hz rTMS (110% of rMT, 900 pulses) over (i) left M1, (ii) right M1, (iii) left dPMC, (iv) right dPMC, and one session of (v) placebo 1 Hz rTMS (0% of rMT, 900 pulses) over the left M1 were applied in randomized order. Motor function of both hands (Jebsen-Taylor Hand Function Test (JTHFT)) and neural processing within both hemispheres (motor evoked potentials (MEPs), cortical silent period (CSP), and ipsilateral silent period (ISP)) were evaluated prior and after each intervention session. RESULTS A lengthening of CSP and ISP durations within the right hemisphere was induced by 1 Hz rTMS over both areas and hemispheres. No such intervention-induced neurophysiological changes were detected within the left hemisphere. Regarding JTHFT and MEP, no intervention-induced changes ensued. Changes of hand function correlated with neurophysiological changes within both hemispheres, more often for the left than the right hand. CONCLUSIONS Effects of 1 Hz rTMS can be better captured by neurophysiological than behavioral measures. Hemispheric differences need to be considered for this intervention.
Collapse
Affiliation(s)
- Jitka Veldema
- Department of Sport Science, Bielefeld University, 33615 Bielefeld, Germany
| | - Dennis Alexander Nowak
- Department of Neurology, VAMED Hospital Kipfenberg, 85110 Kipfenberg, Germany
- Department of Neurology, University Hospital Marburg, 35043 Marburg, Germany
| | - Kathrin Bösl
- Department of Neurology, VAMED Hospital Kipfenberg, 85110 Kipfenberg, Germany
| | - Alireza Gharabaghi
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
4
|
Lin YL, Potter-Baker KA, Cunningham DA, Li M, Sankarasubramanian V, Lee J, Jones S, Sakaie K, Wang X, Machado AG, Plow EB. Stratifying chronic stroke patients based on the influence of contralesional motor cortices: An inter-hemispheric inhibition study. Clin Neurophysiol 2020; 131:2516-2525. [PMID: 32712080 PMCID: PMC7487004 DOI: 10.1016/j.clinph.2020.06.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 01/27/2023]
Abstract
OBJECTIVE A recent "bimodal-balance recovery" model suggests that contralesional influence varies based on the amount of ipsilesional reserve: inhibitory when there is a large reserve, but supportive when there is a low reserve. Here, we investigated the relationships between contralesional influence (inter-hemispheric inhibition, IHI) and ipsilesional reserve (corticospinal damage/impairment), and also defined a criterion separating subgroups based on the relationships. METHODS Twenty-four patients underwent assessment of IHI using Transcranial Magnetic Stimulation (ipsilateral silent period method), motor impairment using Upper Extremity Fugl-Meyer (UEFM), and corticospinal damage using Diffusion Tensor Imaging and active motor threshold. Assessments of UEFM and IHI were repeated after 5-week rehabilitation (n = 21). RESULTS Relationship between IHI and baseline UEFM was quadratic with criterion at UEFM 43 (95%conference interval: 40-46). Patients less impaired than UEFM = 43 showed stronger IHI with more impairment, whereas patients more impaired than UEFM = 43 showed lower IHI with more impairment. Of those made clinically-meaningful functional gains in rehabilitation (n = 14), more-impaired patients showed further IHI reduction. CONCLUSIONS A criterion impairment-level can be derived to stratify patient-subgroups based on the bimodal influence of contralesional cortex. Contralesional influence also evolves differently across subgroups following rehabilitation. SIGNIFICANCE The criterion may be used to stratify patients to design targeted, precision treatments.
Collapse
Affiliation(s)
- Yin-Liang Lin
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei, Taiwan
| | - Kelsey A Potter-Baker
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veteran's Affairs, Cleveland, OH, USA; Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - David A Cunningham
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Physical Medicine and Rehabilitation, Case Western Reserve University, Cleveland, OH, USA; MetroHealth Rehabilitation Institute of Ohio, MetroHealth Medical Center, Cleveland, OH, USA; Cleveland Functional Electrical Stimulation Center, Louis Stokes Cleveland Department of Veteran's Affairs, Cleveland, OH, USA
| | - Manshi Li
- Respiratory Institute Biostatistics Core, Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Vishwanath Sankarasubramanian
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - John Lee
- Department of Physical Medicine and Rehabilitation, Neurological Institute, Cleveland Clinic, OH, USA
| | - Stephen Jones
- Department of Diagnostic Radiology, Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ken Sakaie
- Department of Diagnostic Radiology, Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Xiaofeng Wang
- Respiratory Institute Biostatistics Core, Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Ela B Plow
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Physical Medicine and Rehabilitation, Neurological Institute, Cleveland Clinic, OH, USA.
| |
Collapse
|
5
|
Kuo YL, Dubuc T, Boufadel DF, Fisher BE. Measuring ipsilateral silent period: Effects of muscle contraction levels and quantification methods. Brain Res 2017; 1674:77-83. [DOI: 10.1016/j.brainres.2017.08.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 07/20/2017] [Accepted: 08/12/2017] [Indexed: 10/19/2022]
|
6
|
Targeting interhemispheric inhibition with neuromodulation to enhance stroke rehabilitation. Brain Stimul 2017; 10:214-222. [DOI: 10.1016/j.brs.2017.01.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 12/10/2016] [Accepted: 01/10/2017] [Indexed: 12/13/2022] Open
|
7
|
Gueugneau N, Bove M, Ballay Y, Papaxanthis C. Interhemispheric inhibition is dynamically regulated during action observation. Cortex 2016; 78:138-149. [DOI: 10.1016/j.cortex.2016.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 02/10/2016] [Accepted: 03/01/2016] [Indexed: 11/17/2022]
|
8
|
Klooster DCW, de Louw AJA, Aldenkamp AP, Besseling RMH, Mestrom RMC, Carrette S, Zinger S, Bergmans JWM, Mess WH, Vonck K, Carrette E, Breuer LEM, Bernas A, Tijhuis AG, Boon P. Technical aspects of neurostimulation: Focus on equipment, electric field modeling, and stimulation protocols. Neurosci Biobehav Rev 2016; 65:113-41. [PMID: 27021215 DOI: 10.1016/j.neubiorev.2016.02.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 02/05/2016] [Accepted: 02/17/2016] [Indexed: 12/31/2022]
Abstract
Neuromodulation is a field of science, medicine, and bioengineering that encompasses implantable and non-implantable technologies for the purpose of improving quality of life and functioning of humans. Brain neuromodulation involves different neurostimulation techniques: transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), vagus nerve stimulation (VNS), and deep brain stimulation (DBS), which are being used both to study their effects on cognitive brain functions and to treat neuropsychiatric disorders. The mechanisms of action of neurostimulation remain incompletely understood. Insight into the technical basis of neurostimulation might be a first step towards a more profound understanding of these mechanisms, which might lead to improved clinical outcome and therapeutic potential. This review provides an overview of the technical basis of neurostimulation focusing on the equipment, the present understanding of induced electric fields, and the stimulation protocols. The review is written from a technical perspective aimed at supporting the use of neurostimulation in clinical practice.
Collapse
Affiliation(s)
- D C W Klooster
- Kempenhaeghe Academic Center for Epileptology, P.O. Box 61, 5590 AB Heeze, The Netherlands; Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - A J A de Louw
- Kempenhaeghe Academic Center for Epileptology, P.O. Box 61, 5590 AB Heeze, The Netherlands; Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; Department of Neurology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands.
| | - A P Aldenkamp
- Kempenhaeghe Academic Center for Epileptology, P.O. Box 61, 5590 AB Heeze, The Netherlands; Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; Department of Neurology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; Department of Neurology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | - R M H Besseling
- Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - R M C Mestrom
- Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - S Carrette
- Department of Neurology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | - S Zinger
- Kempenhaeghe Academic Center for Epileptology, P.O. Box 61, 5590 AB Heeze, The Netherlands; Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - J W M Bergmans
- Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - W H Mess
- Departments of Clinical Neurophysiology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands.
| | - K Vonck
- Department of Neurology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | - E Carrette
- Department of Neurology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | - L E M Breuer
- Kempenhaeghe Academic Center for Epileptology, P.O. Box 61, 5590 AB Heeze, The Netherlands.
| | - A Bernas
- Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - A G Tijhuis
- Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - P Boon
- Kempenhaeghe Academic Center for Epileptology, P.O. Box 61, 5590 AB Heeze, The Netherlands; Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; Department of Neurology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| |
Collapse
|
9
|
Ciampi de Andrade D, Mhalla A, Adam F, Texeira MJ, Bouhassira D. Repetitive transcranial magnetic stimulation induced analgesia depends on N-methyl-d-aspartate glutamate receptors. Pain 2014; 155:598-605. [DOI: 10.1016/j.pain.2013.12.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 12/03/2013] [Accepted: 12/10/2013] [Indexed: 12/21/2022]
|
10
|
Goodall S, St Clair Gibson A, Voller B, Lomarev M, Howatson G, Dang N, Hortobágyi T, Hallett M. Repetitive transcranial magnetic stimulation attenuates the perception of force output production in non-exercised hand muscles after unilateral exercise. PLoS One 2013; 8:e80202. [PMID: 24278259 PMCID: PMC3838421 DOI: 10.1371/journal.pone.0080202] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 09/29/2013] [Indexed: 11/19/2022] Open
Abstract
We examined whether unilateral exercise creates perception bias in the non-exercised limb and ascertained whether rTMS applied to the primary motor cortex (M1) interferes with this perception. All participants completed 4 interventions: 1) 15-min learning period of intermittent isometric contractions at 35% MVC with the trained hand (EX), 2) 15-min learning period of intermittent isometric contractions at 35% MVC with the trained hand whilst receiving rTMS over the contralateral M1 (rTMS+EX); 3) 15-min of rTMS over the 'trained' M1 (rTMS) and 4) 15-min rest (Rest). Pre and post-interventions, the error of force output production, the perception of effort (RPE), motor evoked potentials (MEPs) and compound muscle action potentials (CMAPs) were measured in both hands. EX did not alter the error of force output production in the trained hand (Δ3%; P>0.05); however, the error of force output production was reduced in the untrained hand (Δ12%; P<0.05). rTMS+EX and rTMS alone did not show an attenuation in the error of force output production in either hand. EX increased RPE in the trained hand (9.1±0.5 vs. 11.3±0.7; P<0.01) but not the untrained hand (8.8±0.6 vs. 9.2±0.6; P>0.05). RPE was significantly higher after rTMS+EX in the trained hand (9.2±0.5 vs. 10.7±0.7; P<0.01) but ratings were unchanged in the untrained hand (8.5±0.6 vs. 9.2±0.5; P>0.05). The novel finding was that exercise alone reduced the error in force output production by over a third in the untrained hand. Further, when exercise was combined with rTMS the transfer of force perception was attenuated. These data suggest that the contralateral M1 of the trained hand might, in part, play an essential role for the transfer of force perception to the untrained hand.
Collapse
Affiliation(s)
- Stuart Goodall
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Alan St Clair Gibson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Bernhard Voller
- Department for Neurology, Medical University of Vienna, Vienna, Austria
| | - Mike Lomarev
- Bekhterev Neuropsychological Institute, St. Petersburg, Russian Federation
| | - Glyn Howatson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
- Water Research Group, School of Environmental Sciences and Development, Northwest University, Potchefstroom, South Africa
| | - Nguyet Dang
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tibor Hortobágyi
- University of Groningen Medical Center, Groningen, The Netherlands
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
11
|
Therrien AS, Lyons J, Balasubramaniam R. Continuous theta-burst stimulation to primary motor cortex reveals asymmetric compensation for sensory attenuation in bimanual repetitive force production. J Neurophysiol 2013; 110:872-82. [PMID: 23678021 DOI: 10.1152/jn.00988.2012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Studies of fingertip force production have shown that self-produced forces are perceived as weaker than externally generated forces. This is due to mechanisms of sensory reafference where the comparison between predicted and actual sensory feedback results in attenuated perceptions of self-generated forces. Without an external reference to calibrate attenuated performance judgments, a compensatory overproduction of force is exhibited. It remains unclear whether the force overproduction seen in the absence of visual reference stimuli differs when forces are produced bimanually. We studied performance of two versions of a bimanual sequential force production task compared with each hand performing the task unimanually. When the task goal was shared, force series produced by each hand in bimanual conditions were found to be uncorrelated. When the bimanual task required each hand to reach a target force level, we found asymmetries in the degree of force overproduction between the hands following visual feedback removal. Unilateral continuous theta-burst stimulation of the left primary motor cortex yielded a selective reduction of force overproduction in the hand contralateral to stimulation by disrupting sensory reafference processes. While variability was lower in bimanual trials when the task goal was shared, this influence of hand condition disappeared when the target force level was to be reached by each hand simultaneously. Our findings strengthen the notion that force control in bimanual action is less tightly coupled than other mechanisms of bimanual motor control and show that this effector specificity may be extended to the processing and compensation for mechanisms of sensory reafference.
Collapse
Affiliation(s)
- Amanda S Therrien
- Sensorimotor Neuroscience Laboratory, McMaster University, Hamilton, Ontario, Canada.
| | | | | |
Collapse
|
12
|
Therrien AS, Richardson BA, Balasubramaniam R. Continuous theta-burst stimulation to primary motor cortex reduces the overproduction of forces following removal of visual feedback. Neuropsychologia 2011; 49:2941-6. [DOI: 10.1016/j.neuropsychologia.2011.06.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 06/09/2011] [Accepted: 06/15/2011] [Indexed: 11/24/2022]
|
13
|
Giovannelli F, Borgheresi A, Balestrieri F, Zaccara G, Viggiano MP, Cincotta M, Ziemann U. Modulation of interhemispheric inhibition by volitional motor activity: an ipsilateral silent period study. J Physiol 2009; 587:5393-410. [PMID: 19770195 PMCID: PMC2793872 DOI: 10.1113/jphysiol.2009.175885] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 09/15/2009] [Indexed: 12/27/2022] Open
Abstract
Brief interruption of voluntary EMG in a hand muscle by focal transcranial magnetic stimulation (TMS) of the ipsilateral primary motor cortex (M1), the so-called ipsilateral silent period (ISP), is a measure of interhemispheric motor inhibition. However, little is known about how volitional motor activity would modulate the ISP. Here we tested in 30 healthy adults to what extent and under what conditions voluntary activation of the stimulated right M1 by moving the left hand strengthens interhemispheric inhibition as indexed by an enhancement of the ISP area in the maximally contracting right first dorsal interosseous (FDI). Left index finger abduction, already at low levels of contraction, significantly enhanced the ISP compared to left hand at rest. Even imagination of left index finger movement enhanced the ISP compared to rest or mental calculation. This enhancement occurred in the absence of motor-evoked potential amplitude modulation in the left FDI, thus excluding a non-specific contribution from an increase in right M1 corticospinal excitability. Contraction of the left extensor indicis, but not contraction of more proximal left upper limb or left or right lower limb muscles also enhanced the ISP. A reaction time experiment showed that the ISP enhancement developed at a late stage of movement preparation just before or at movement onset. Interhemispheric inhibition of the motor-evoked potential as tested by a bifocal paired-pulse TMS protocol and thought to be mediated via a neuronal circuit different to the ISP was not enhanced when tested under identical motor task conditions. Finally, ISP enhancement by contraction of the left FDI correlated inversely with EMG mirror activity in the right FDI during phasic abductions of the left index finger. Our findings strongly suggest that voluntary M1 activation by real or imagined movement of the contralateral hand increases interhemispheric motor inhibition of the opposite M1. This phenomenon shows substantial topographical, temporal and neuronal circuit specificity, and has functional significance as it probably plays a pivotal role in suppressing mirror activity.
Collapse
|
14
|
Abstract
Previous results using paired-pulse transcranial magnetic stimulation (TMS) have suggested that the excitability of transcallosal (TC) connections between the hand areas of the two motor cortices is modulated by intracortical inhibitory circuits in the same way as corticospinal tract (CTS) projections to spinal motoneurons. Here we describe two further similarities in TC and CTS control using (1) an I-wave facilitation protocol and (2) preconditioning with rTMS. In experiment 1, excitability of TC pathways was measured using interhemispheric inhibition (IHI) and the ipsilateral silent period (iSP), whilst excitability of CTS pathways was measured by recording the EMG response evoked in the first dorsal interosseous muscle contralateral to the conditioning stimulus (cMEP). The intensity of the conditioning stimulus was first adjusted to threshold for evoking IHI and iSP, then pairs of conditioning stimuli were applied randomly at interstimulus intervals (ISIs) from 1.3 to 4.3 ms. IHI and iSP were facilitated at ISI=1.5 ms and 3.0 ms, respectively, as was the MEP evoked by the conditioning stimuli in the contralateral hand. We suggest that TC projections receive I-wave-like facilitation similar to that seen in CTS projections. In experiment 2, short interval inhibition of the iSP (SICIiSP), and short interval intracortical inhibition of the cMEP (SICIcMEP) were examined before and after 600 pulses of 5 Hz rTMS at 90% resting motor threshold. Both SICIiSP and SICIcMEP were reduced, as was the iSP; the cMEP was unchanged. This shows that the population of inhibitory interneurons that control TC neurons respond in the same way to 5 Hz rTMS as those that control CTS neurons. Taken together, the data from the two experiments suggest that the layer III and layer V pyramidal neurons that give rise to TC and CTS pathways, respectively, are controlled by neuronal circuitry with similar properties.
Collapse
Affiliation(s)
- L Avanzino
- Sobell Department of Motor Neuroscience and Movement Disorders, Box 66, Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | | | | |
Collapse
|