1
|
Zendrikov D, Paraskevov A. The vitals for steady nucleation maps of spontaneous spiking coherence in autonomous two-dimensional neuronal networks. Neural Netw 2024; 180:106589. [PMID: 39217864 DOI: 10.1016/j.neunet.2024.106589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/06/2024] [Accepted: 07/28/2024] [Indexed: 09/04/2024]
Abstract
Thin pancake-like neuronal networks cultured on top of a planar microelectrode array have been extensively tried out in neuroengineering, as a substrate for the mobile robot's control unit, i.e., as a cyborg's brain. Most of these attempts failed due to intricate self-organizing dynamics in the neuronal systems. In particular, the networks may exhibit an emergent spatial map of steady nucleation sites ("n-sites") of spontaneous population spikes. Being unpredictable and independent of the surface electrode locations, the n-sites drastically change local ability of the network to generate spikes. Here, using a spiking neuronal network model with generative spatially-embedded connectome, we systematically show in simulations that the number, location, and relative activity of spontaneously formed n-sites ("the vitals") crucially depend on the samplings of three distributions: (1) the network distribution of neuronal excitability, (2) the distribution of connections between neurons of the network, and (3) the distribution of maximal amplitudes of a single synaptic current pulse. Moreover, blocking the dynamics of a small fraction (about 4%) of non-pacemaker neurons having the highest excitability was enough to completely suppress the occurrence of population spikes and their n-sites. This key result is explained theoretically. Remarkably, the n-sites occur taking into account only short-term synaptic plasticity, i.e., without a Hebbian-type plasticity. As the spiking network model used in this study is strictly deterministic, all simulation results can be accurately reproduced. The model, which has already demonstrated a very high richness-to-complexity ratio, can also be directly extended into the three-dimensional case, e.g., for targeting peculiarities of spiking dynamics in cerebral (or brain) organoids. We recommend the model as an excellent illustrative tool for teaching network-level computational neuroscience, complementing a few benchmark models.
Collapse
Affiliation(s)
- Dmitrii Zendrikov
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland.
| | | |
Collapse
|
2
|
Muzzi L, Di Lisa D, Falappa M, Pepe S, Maccione A, Pastorino L, Martinoia S, Frega M. Human-Derived Cortical Neurospheroids Coupled to Passive, High-Density and 3D MEAs: A Valid Platform for Functional Tests. Bioengineering (Basel) 2023; 10:bioengineering10040449. [PMID: 37106636 PMCID: PMC10136157 DOI: 10.3390/bioengineering10040449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
With the advent of human-induced pluripotent stem cells (hiPSCs) and differentiation protocols, methods to create in-vitro human-derived neuronal networks have been proposed. Although monolayer cultures represent a valid model, adding three-dimensionality (3D) would make them more representative of an in-vivo environment. Thus, human-derived 3D structures are becoming increasingly used for in-vitro disease modeling. Achieving control over the final cell composition and investigating the exhibited electrophysiological activity is still a challenge. Thence, methodologies to create 3D structures with controlled cellular density and composition and platforms capable of measuring and characterizing the functional aspects of these samples are needed. Here, we propose a method to rapidly generate neurospheroids of human origin with control over cell composition that can be used for functional investigations. We show a characterization of the electrophysiological activity exhibited by the neurospheroids by using micro-electrode arrays (MEAs) with different types (i.e., passive, C-MOS, and 3D) and number of electrodes. Neurospheroids grown in free culture and transferred on MEAs exhibited functional activity that can be chemically and electrically modulated. Our results indicate that this model holds great potential for an in-depth study of signal transmission to drug screening and disease modeling and offers a platform for in-vitro functional testing.
Collapse
Affiliation(s)
- Lorenzo Muzzi
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genoa, 16145 Genoa, Italy
| | - Donatella Di Lisa
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genoa, 16145 Genoa, Italy
| | - Matteo Falappa
- 3Brain AG, 8808 Pfäffikon, Switzerland
- Corticale Srl., 16145 Genoa, Italy
| | - Sara Pepe
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
| | | | - Laura Pastorino
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genoa, 16145 Genoa, Italy
| | - Sergio Martinoia
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genoa, 16145 Genoa, Italy
| | - Monica Frega
- Department of Clinical Neurophysiology, University of Twente, 7522 NB Enschede, The Netherlands
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
3
|
Zendrikov D, Paraskevov A. Emergent population activity in metric-free and metric networks of neurons with stochastic spontaneous spikes and dynamic synapses. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2020.11.073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Buntschu S, Tscherter A, Heidemann M, Streit J. Critical Components for Spontaneous Activity and Rhythm Generation in Spinal Cord Circuits in Culture. Front Cell Neurosci 2020; 14:81. [PMID: 32410961 PMCID: PMC7198714 DOI: 10.3389/fncel.2020.00081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/19/2020] [Indexed: 11/23/2022] Open
Abstract
Neuronal excitability contributes to rhythm generation in central pattern generating networks (CPGs). In spinal cord CPGs, such intrinsic excitability partly relies on persistent sodium currents (INaP), whereas respiratory CPGs additionally depend on calcium-activated cation currents (ICAN). Here, we investigated the contributions of INaP and ICAN to spontaneous rhythm generation in neuronal networks of the spinal cord and whether they mainly involve Hb9 neurons. We used cultures of ventral and transverse slices from the E13-14 embryonic rodent lumbar spinal cord on multielectrode arrays (MEAs). All cultures showed spontaneous bursts of network activity. Blocking synaptic excitation with the AMPA receptor antagonist CNQX suppressed spontaneous network bursts and left asynchronous intrinsic activity at about 30% of the electrodes. Such intrinsic activity was completely blocked at all electrodes by both the INaP blocker riluzole as well as by the ICAN blocker flufenamic acid (FFA) and the more specific TRPM4 channel antagonist 9-phenanthrol. All three antagonists also suppressed spontaneous bursting completely and strongly reduced stimulus-evoked bursts. Also, FFA reduced repetitive spiking that was induced in single neurons by injection of depolarizing current pulses to few spikes. Other antagonists of unspecific cation currents or calcium currents had no suppressing effects on either intrinsic activity (gadolinium chloride) or spontaneous bursting (the TRPC channel antagonists clemizole and ML204 and the T channel antagonist TTA-P2). Combined patch-clamp and MEA recordings showed that Hb9 interneurons were activated by network bursts but could not initiate them. Together these findings suggest that both INaP through Na+-channels and ICAN through putative TRPM4 channels contribute to spontaneous intrinsic and repetitive spiking in spinal cord neurons and thereby to the generation of network bursts.
Collapse
Affiliation(s)
| | | | | | - Jürg Streit
- Department of Physiology, University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Prox J, Smith T, Holl C, Chehade N, Guo L. Integrated biocircuits: engineering functional multicellular circuits and devices. J Neural Eng 2018; 15:023001. [DOI: 10.1088/1741-2552/aaa906] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
6
|
Chen HI, Wolf JA, Smith DH. Multichannel activity propagation across an engineered axon network. J Neural Eng 2017; 14:026016. [PMID: 28140365 DOI: 10.1088/1741-2552/aa5ccd] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Although substantial progress has been made in mapping the connections of the brain, less is known about how this organization translates into brain function. In particular, the massive interconnectivity of the brain has made it difficult to specifically examine data transmission between two nodes of the connectome, a central component of the 'neural code.' Here, we investigated the propagation of multiple streams of asynchronous neuronal activity across an isolated in vitro 'connectome unit.' APPROACH We used the novel technique of axon stretch growth to create a model of a long-range cortico-cortical network, a modular system consisting of paired nodes of cortical neurons connected by axon tracts. Using optical stimulation and multi-electrode array recording techniques, we explored how input patterns are represented by cortical networks, how these representations shift as they are transmitted between cortical nodes and perturbed by external conditions, and how well the downstream node distinguishes different patterns. MAIN RESULTS Stimulus representations included direct, synaptic, and multiplexed responses that grew in complexity as the distance between the stimulation source and recorded neuron increased. These representations collapsed into patterns with lower information content at higher stimulation frequencies. With internodal activity propagation, a hierarchy of network pathways, including latent circuits, was revealed using glutamatergic blockade. As stimulus channels were added, divergent, non-linear effects were observed in local versus distant network layers. Pairwise difference analysis of neuronal responses suggested that neuronal ensembles generally outperformed individual cells in discriminating input patterns. SIGNIFICANCE Our data illuminate the complexity of spiking activity propagation in cortical networks in vitro, which is characterized by the transformation of an input into myriad outputs over several network layers. These results provide insight into how the brain potentially processes information and generates the neural code and could guide the development of clinical therapies based on multichannel brain stimulation.
Collapse
Affiliation(s)
- H Isaac Chen
- Department of Neurosurgery, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA 19104, United States of America. Philadelphia Veterans Affairs Medical Center, Philadelphia, PA 19104, United States of America
| | | | | |
Collapse
|
7
|
DeMarse TB, Pan L, Alagapan S, Brewer GJ, Wheeler BC. Feed-Forward Propagation of Temporal and Rate Information between Cortical Populations during Coherent Activation in Engineered In Vitro Networks. Front Neural Circuits 2016; 10:32. [PMID: 27147977 PMCID: PMC4840215 DOI: 10.3389/fncir.2016.00032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/07/2016] [Indexed: 12/28/2022] Open
Abstract
Transient propagation of information across neuronal assembles is thought to underlie many cognitive processes. However, the nature of the neural code that is embedded within these transmissions remains uncertain. Much of our understanding of how information is transmitted among these assemblies has been derived from computational models. While these models have been instrumental in understanding these processes they often make simplifying assumptions about the biophysical properties of neurons that may influence the nature and properties expressed. To address this issue we created an in vitro analog of a feed-forward network composed of two small populations (also referred to as assemblies or layers) of living dissociated rat cortical neurons. The populations were separated by, and communicated through, a microelectromechanical systems (MEMS) device containing a strip of microscale tunnels. Delayed culturing of one population in the first layer followed by the second a few days later induced the unidirectional growth of axons through the microtunnels resulting in a primarily feed-forward communication between these two small neural populations. In this study we systematically manipulated the number of tunnels that connected each layer and hence, the number of axons providing communication between those populations. We then assess the effect of reducing the number of tunnels has upon the properties of between-layer communication capacity and fidelity of neural transmission among spike trains transmitted across and within layers. We show evidence based on Victor-Purpura's and van Rossum's spike train similarity metrics supporting the presence of both rate and temporal information embedded within these transmissions whose fidelity increased during communication both between and within layers when the number of tunnels are increased. We also provide evidence reinforcing the role of synchronized activity upon transmission fidelity during the spontaneous synchronized network burst events that propagated between layers and highlight the potential applications of these MEMs devices as a tool for further investigation of structure and functional dynamics among neural populations.
Collapse
Affiliation(s)
- Thomas B DeMarse
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of FloridaGainesville, FL, USA; Department of Pediatric Neurology, University of FloridaGainesville, FL, USA
| | - Liangbin Pan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida Gainesville, FL, USA
| | - Sankaraleengam Alagapan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida Gainesville, FL, USA
| | - Gregory J Brewer
- Department of Bioengineering, University of California Irvine, CA, USA
| | - Bruce C Wheeler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of FloridaGainesville, FL, USA; Department of Bioengineering, University of CaliforniaSan Diego, CA, USA
| |
Collapse
|
8
|
Shein-Idelson M, Cohen G, Ben-Jacob E, Hanein Y. Modularity Induced Gating and Delays in Neuronal Networks. PLoS Comput Biol 2016; 12:e1004883. [PMID: 27104350 PMCID: PMC4841573 DOI: 10.1371/journal.pcbi.1004883] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 03/24/2016] [Indexed: 11/23/2022] Open
Abstract
Neural networks, despite their highly interconnected nature, exhibit distinctly localized and gated activation. Modularity, a distinctive feature of neural networks, has been recently proposed as an important parameter determining the manner by which networks support activity propagation. Here we use an engineered biological model, consisting of engineered rat cortical neurons, to study the role of modular topology in gating the activity between cell populations. We show that pairs of connected modules support conditional propagation (transmitting stronger bursts with higher probability), long delays and propagation asymmetry. Moreover, large modular networks manifest diverse patterns of both local and global activation. Blocking inhibition decreased activity diversity and replaced it with highly consistent transmission patterns. By independently controlling modularity and disinhibition, experimentally and in a model, we pose that modular topology is an important parameter affecting activation localization and is instrumental for population-level gating by disinhibition. The capacity to transmit information between connected parts of a neuronal network is fundamental to its function. The organization of network connections (the topology of the network) is therefore expected to play an important role in determining network transmission. Since modular topology characterizes many brain circuits on multiple scales, investigating the role of modularity in activity gating is clearly desirable. By engineering such modular networks in vitro, we were able to perform such an investigation. Under these experimental conditions, we can independently control the degree of modularity, as well as inhibition in the network. We show that a combination of these two properties is highly beneficial from a communication perspective. Namely, it equips connected modules and large modular networks with the capacity to gate and temporally coordinate activity between the different parts of the network.
Collapse
Affiliation(s)
- Mark Shein-Idelson
- School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
- Tel Aviv University Center for Nanoscience and Nanotechnology, Tel Aviv, Israel
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
- * E-mail:
| | - Gilad Cohen
- School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
- Tel Aviv University Center for Nanoscience and Nanotechnology, Tel Aviv, Israel
| | - Eshel Ben-Jacob
- Tel Aviv University Center for Nanoscience and Nanotechnology, Tel Aviv, Israel
- School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Yael Hanein
- School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
- Tel Aviv University Center for Nanoscience and Nanotechnology, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
9
|
Pan L, Alagapan S, Franca E, Leondopulos SS, DeMarse TB, Brewer GJ, Wheeler BC. An in vitro method to manipulate the direction and functional strength between neural populations. Front Neural Circuits 2015; 9:32. [PMID: 26236198 PMCID: PMC4500931 DOI: 10.3389/fncir.2015.00032] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 06/19/2015] [Indexed: 01/04/2023] Open
Abstract
We report the design and application of a Micro Electro Mechanical Systems (MEMs) device that permits investigators to create arbitrary network topologies. With this device investigators can manipulate the degree of functional connectivity among distinct neural populations by systematically altering their geometric connectivity in vitro. Each polydimethylsilxane (PDMS) device was cast from molds and consisted of two wells each containing a small neural population of dissociated rat cortical neurons. Wells were separated by a series of parallel micrometer scale tunnels that permitted passage of axonal processes but not somata; with the device placed over an 8 × 8 microelectrode array, action potentials from somata in wells and axons in microtunnels can be recorded and stimulated. In our earlier report we showed that a one week delay in plating of neurons from one well to the other led to a filling and blocking of the microtunnels by axons from the older well resulting in strong directionality (older to younger) of both axon action potentials in tunnels and longer duration and more slowly propagating bursts of action potentials between wells. Here we show that changing the number of tunnels, and hence the number of axons, connecting the two wells leads to changes in connectivity and propagation of bursting activity. More specifically, the greater the number of tunnels the stronger the connectivity, the greater the probability of bursting propagating between wells, and shorter peak-to-peak delays between bursts and time to first spike measured in the opposing well. We estimate that a minimum of 100 axons are needed to reliably initiate a burst in the opposing well. This device provides a tool for researchers interested in understanding network dynamics who will profit from having the ability to design both the degree and directionality connectivity among multiple small neural populations.
Collapse
Affiliation(s)
- Liangbin Pan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida Gainesville, FL, USA
| | - Sankaraleengam Alagapan
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida Gainesville, FL, USA
| | - Eric Franca
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida Gainesville, FL, USA
| | - Stathis S Leondopulos
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida Gainesville, FL, USA
| | - Thomas B DeMarse
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida Gainesville, FL, USA
| | - Gregory J Brewer
- Department of Biomedical Engineering, University of California Irvine Irvine, CA, USA
| | - Bruce C Wheeler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida Gainesville, FL, USA
| |
Collapse
|
10
|
Emergence of bursting activity in connected neuronal sub-populations. PLoS One 2014; 9:e107400. [PMID: 25250616 PMCID: PMC4175468 DOI: 10.1371/journal.pone.0107400] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 08/14/2014] [Indexed: 11/19/2022] Open
Abstract
Uniform and modular primary hippocampal cultures from embryonic rats were grown on commercially available micro-electrode arrays to investigate network activity with respect to development and integration of different neuronal populations. Modular networks consisting of two confined active and inter-connected sub-populations of neurons were realized by means of bi-compartmental polydimethylsiloxane structures. Spontaneous activity in both uniform and modular cultures was periodically monitored, from three up to eight weeks after plating. Compared to uniform cultures and despite lower cellular density, modular networks interestingly showed higher firing rates at earlier developmental stages, and network-wide firing and bursting statistics were less variable over time. Although globally less correlated than uniform cultures, modular networks exhibited also higher intra-cluster than inter-cluster correlations, thus demonstrating that segregation and integration of activity coexisted in this simple yet powerful in vitro model. Finally, the peculiar synchronized bursting activity shown by confined modular networks preferentially propagated within one of the two compartments (‘dominant’), even in cases of perfect balance of firing rate between the two sub-populations. This dominance was generally maintained during the entire monitored developmental frame, thus suggesting that the implementation of this hierarchy arose from early network development.
Collapse
|
11
|
Emergence of assortative mixing between clusters of cultured neurons. PLoS Comput Biol 2014; 10:e1003796. [PMID: 25188377 PMCID: PMC4154651 DOI: 10.1371/journal.pcbi.1003796] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 07/06/2014] [Indexed: 11/19/2022] Open
Abstract
The analysis of the activity of neuronal cultures is considered to be a good proxy of the functional connectivity of in vivo neuronal tissues. Thus, the functional complex network inferred from activity patterns is a promising way to unravel the interplay between structure and functionality of neuronal systems. Here, we monitor the spontaneous self-sustained dynamics in neuronal cultures formed by interconnected aggregates of neurons (clusters). Dynamics is characterized by the fast activation of groups of clusters in sequences termed bursts. The analysis of the time delays between clusters' activations within the bursts allows the reconstruction of the directed functional connectivity of the network. We propose a method to statistically infer this connectivity and analyze the resulting properties of the associated complex networks. Surprisingly enough, in contrast to what has been reported for many biological networks, the clustered neuronal cultures present assortative mixing connectivity values, meaning that there is a preference for clusters to link to other clusters that share similar functional connectivity, as well as a rich-club core, which shapes a 'connectivity backbone' in the network. These results point out that the grouping of neurons and the assortative connectivity between clusters are intrinsic survival mechanisms of the culture.
Collapse
|
12
|
Functional regeneration of intraspinal connections in a new in vitro model. Neuroscience 2014; 262:40-52. [PMID: 24394955 DOI: 10.1016/j.neuroscience.2013.12.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 11/29/2013] [Accepted: 12/23/2013] [Indexed: 11/21/2022]
Abstract
Regeneration in the adult mammalian spinal cord is limited due to intrinsic properties of mature neurons and a hostile environment, mainly provided by central nervous system myelin and reactive astrocytes. Recent results indicate that propriospinal connections are a promising target for intervention to improve functional recovery. To study this functional regeneration in vitro we developed a model consisting of two organotypic spinal cord slices placed adjacently on multi-electrode arrays. The electrodes allow us to record the spontaneously occurring neuronal activity, which is often organized in network bursts. Within a few days in vitro (DIV), these bursts become synchronized between the two slices due to the formation of axonal connections. We cut them with a scalpel at different time points in vitro and record the neuronal activity 3 weeks later. The functional recovery ability was assessed by calculating the percentage of synchronized bursts between the two slices. We found that cultures lesioned at a young age (7-9 DIV) retained the high regeneration ability of embryonic tissue. However, cultures lesioned at older ages (>19 DIV) displayed a distinct reduction of synchronized activity. This reduction was not accompanied by an inability for axons to cross the lesion site. We show that functional regeneration in these old cultures can be improved by increasing the intracellular cAMP level with Rolipram or by placing a young slice next to an old one directly after the lesion. We conclude that co-cultures of two spinal cord slices are an appropriate model to study functional regeneration of intraspinal connections.
Collapse
|
13
|
Local MEG networks: the missing link between protein expression and epilepsy in glioma patients? Neuroimage 2013; 75:195-203. [PMID: 23507380 DOI: 10.1016/j.neuroimage.2013.02.067] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 01/28/2013] [Accepted: 02/27/2013] [Indexed: 01/21/2023] Open
Abstract
Connectivity and network analysis in neuroscience has been applied to multiple spatial scales, but the links between these different scales have rarely been investigated. In tumor-related epilepsy, altered network topology is related to behavior, but the molecular basis of these observations is unknown. We elucidate the associations between microscopic features of brain tumors, local network topology, and functional patient status. We hypothesize that expression of proteins related to tumor-related epilepsy is directly correlated with network characteristics of the tumor area. Glioma patients underwent magnetoencephalography, and functional network topology of the tumor area was used to predict tissue protein expression patterns of tumor tissue collected during neurosurgery. Protein expression and network topology were interdependent; in particular between-module connectivity was selectively associated with two epilepsy-related proteins. Total number of seizures was related to both the role of the tumor area in the functional network and to protein expression. Importantly, classification of protein expression was predicted by between-module connectivity with up to 100% accuracy. Thus, network topology may serve as an intermediate level between molecular features of tumor tissue and symptomatology in brain tumor patients, and can potentially be used as a non-invasive marker for microscopic tissue characteristics.
Collapse
|
14
|
Corner M, van der Togt C. No phylogeny without ontogeny: a comparative and developmental search for the sources of sleep-like neural and behavioral rhythms. Neurosci Bull 2012; 28:25-38. [PMID: 22233887 DOI: 10.1007/s12264-012-1062-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
A comprehensive review is presented of reported aspects and putative mechanisms of sleep-like motility rhythms throughout the animal kingdom. It is proposed that 'rapid eye movement (REM) sleep' be regarded as a special case of a distinct but much broader category of behavior, 'rapid body movement (RBM) sleep', defined by intrinsically-generated and apparently non-purposive movements. Such a classification completes a 2 × 2 matrix defined by the axes sleep versus waking and active versus quiet. Although 'paradoxical' arousal of forebrain electrical activity is restricted to warm-blooded vertebrates, we urge that juvenile or even infantile stages of development be investigated in cold-blooded animals, in view of the many reports of REM-like spontaneous motility (RBMs) in a wide range of species during sleep. The neurophysiological bases for motorically active sleep at the brainstem level and for slow-wave sleep in the forebrain appear to be remarkably similar, and to be subserved in both cases by a primitive diffuse mode of neuronal organization. Thus, the spontaneous synchronous burst discharges which are characteristics of the sleeping brain can be readily simulated even by highly unstructured neural network models. Neuromotor discharges during active sleep appear to reflect a hierarchy of simple relaxation oscillation mechanisms, spanning a wide range of spike-dependent relaxation times, whereas the periodic alternation of active and quiet sleep states more likely results from the entrainment of intrinsic cellular rhythms and/or from activity-dependent homeostatic changes in network excitability.
Collapse
Affiliation(s)
- Michael Corner
- The Netherlands Institute for Brain Research, Amsterdam.
| | | |
Collapse
|
15
|
Levy O, Ziv NE, Marom S. Enhancement of neural representation capacity by modular architecture in networks of cortical neurons. Eur J Neurosci 2012; 35:1753-60. [PMID: 22507055 DOI: 10.1111/j.1460-9568.2012.08094.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biological networks are ubiquitously modular, a feature that is believed to be essential for the enhancement of their functional capacities. Here, we have used a simple modular in vitro design to examine the possibility that modularity enhances network functionality in the context of input representation. We cultured networks of cortical neurons obtained from newborn rats in vitro on substrate-integrated multi-electrode arrays, forcing the network to develop two well-defined modules of neural populations that are coupled by a narrow canal. We measured the neural activity, and examined the capacity of each module to individually classify (i.e. represent) spatially distinct electrical stimuli and propagate input-specific activity features to their downstream coupled counterpart. We show that, although each of the coupled modules maintains its autonomous functionality, a significant enhancement of representational capacity is achieved when the system is observed as a whole. We interpret our results in terms of a relative decorrelation effect imposed by weak coupling between modules.
Collapse
Affiliation(s)
- Ofri Levy
- Faculty of Medicine and Network Biology Laboratories, Technion, Haifa, Israel.
| | | | | |
Collapse
|
16
|
Czarnecki A, Tscherter A, Streit J. Network activity and spike discharge oscillations in cortical slice cultures from neonatal rat. Eur J Neurosci 2012; 35:375-88. [PMID: 22276985 DOI: 10.1111/j.1460-9568.2011.07966.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Network bursts and oscillations are forms of spontaneous activity in cortical circuits that have been described in vivo and in vitro. Searching for mechanisms involved in their generation, we investigated the collective network activity and spike discharge oscillations in cortical slice cultures of neonatal rats, combining multielectrode arrays with patch clamp recordings from individual neurons. The majority of these cultures showed spontaneous collective network activity [population bursts (PBs)] that could be described as neuronal avalanches. The largest of these PBs were followed by fast spike discharge oscillations in the beta to theta range, and sometimes additional repetitive PBs, together forming seizure-like episodes. During such episodes, all neurons showed sustained depolarization with increased spike rates. However, whereas regular-spiking (RS) and fast-spiking (FS) neurons fired during the PBs, only the FS neurons fired during the fast oscillations. Blockade of N-methyl-d-aspartate receptors reduced the depolarization and suppressed both the increased FS neuron firing and the oscillations. To investigate the generation of PBs, we studied the network responses to electrical stimulation. For most of the stimulation sites, the relationship between the stimulated inputs and the evoked PBs was linear. From a few stimulation sites, however, large PBs could be evoked with small inputs, indicating the activation of hub circuits. Taken together, our findings suggests that the oscillations originate from recurrent inhibition in local networks of depolarized inhibitory FS interneurons, whereas the PBs originate from recurrent excitation in networks of RS and FS neurons that is initiated in hub circuits.
Collapse
Affiliation(s)
- Antonny Czarnecki
- Department of Physiology, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | | | | |
Collapse
|
17
|
Shein-Idelson M, Ben-Jacob E, Hanein Y. Engineered neuronal circuits: a new platform for studying the role of modular topology. FRONTIERS IN NEUROENGINEERING 2011; 4:10. [PMID: 21991254 PMCID: PMC3180629 DOI: 10.3389/fneng.2011.00010] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Accepted: 08/23/2011] [Indexed: 12/05/2022]
Abstract
Neuron–glia cultures serve as a valuable model system for exploring the bio-molecular activity of single cells. Since neurons in culture can be conveniently recorded with great fidelity from many sites simultaneously, it has long been suggested that uniform cultured neurons may also be used to investigate network-level mechanisms pertinent to information processing, activity propagation, memory, and learning. But how much of the functionality of neural circuits can be retained in vitro remains an open question. Recent studies utilizing patterned networks suggest that they provide a most useful platform to address fundamental questions in neuroscience. Here we review recent efforts in the realm of patterned networks’ activity investigations. We give a brief overview of the patterning methods and experimental approaches commonly employed in the field, and summarize the main results reported in the literature. The general picture that emerges from these reports indicates that patterned networks with uniform connectivity do not exhibit unique activity patterns. Rather, their activity is very similar to that of unpatterned uniform networks. However, by breaking the connectivity homogeneity, using a modular architecture, it is possible to introduce pronounced topology-related gating and delay effects. These findings suggest that patterned cultured networks may serve as a new platform for studying the role of modularity in neuronal circuits.
Collapse
|
18
|
Brocard F, Tazerart S, Vinay L. Do pacemakers drive the central pattern generator for locomotion in mammals? Neuroscientist 2010; 16:139-55. [PMID: 20400712 DOI: 10.1177/1073858409346339] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Locomotor disorders profoundly impact quality of life of patients with spinal cord injury. Understanding the neuronal networks responsible for locomotion remains a major challenge for neuroscientists and a fundamental prerequisite to overcome motor deficits. Although neuronal circuitry governing swimming activities in lower vertebrates has been studied in great details, determinants of walking activities in mammals remain elusive. The manuscript reviews some of the principles relevant to the functional organization of the mammalian locomotor network and mainly focuses on mechanisms involved in rhythmogenesis. Based on recent publications supplemented with new experimental data, the authors will specifically discuss a new working hypothesis in which pacemakers, cells characterized by inherent oscillatory properties, might be functionally integrated in the locomotor network in mammals.
Collapse
Affiliation(s)
- Frédéric Brocard
- Lab Plasticité et Physio-Pathologie de la Motricité, Centre National De La Recherche Scientifique, Université Aix-Marseille, Marseille, France.
| | | | | |
Collapse
|
19
|
Ivenshitz M, Segal M. Neuronal density determines network connectivity and spontaneous activity in cultured hippocampus. J Neurophysiol 2010; 104:1052-60. [PMID: 20554850 DOI: 10.1152/jn.00914.2009] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effects of neuronal density on morphological and functional attributes of the evolving networks were studied in cultured dissociated hippocampal neurons. Plating at different densities affected connectivity among the neurons, such that sparse networks exhibited stronger synaptic connections between pairs of recorded neurons. This was associated with different patterns of spontaneous network activity with enhanced burst size but reduced burst frequency in the sparse cultures. Neuronal density also affected the morphology of the dendrites and spines of these neurons, such that sparse neurons had a simpler dendritic tree and fewer dendritic spines. Additionally, analysis of neurons transfected with PSD95 revealed that in sparse cultures the synapses are formed on the dendritic shaft, whereas in dense cultures the synapses are formed primarily on spine heads. These experiments provide important clues on the role of neuronal density in population activity and should yield new insights into the rules governing neuronal network connectivity.
Collapse
Affiliation(s)
- Miriam Ivenshitz
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
20
|
Liquid state machines and cultured cortical networks: the separation property. Biosystems 2008; 95:90-7. [PMID: 18761392 DOI: 10.1016/j.biosystems.2008.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 08/01/2008] [Accepted: 08/04/2008] [Indexed: 11/20/2022]
Abstract
In vitro neural networks of cortical neurons interfaced to a computer via multichannel microelectrode arrays (MEA) provide a unique paradigm to create a hybrid neural computer. Unfortunately, only rudimentary information about these in vitro network's computational properties or the extent of their abilities are known. To study those properties, a liquid state machine (LSM) approach was employed in which the liquid (typically an artificial neural network) was replaced with a living cortical network and the input and readout functions were replaced by the MEA-computer interface. A key requirement of the LSM architecture is that inputs into the liquid state must result in separable outputs based on the liquid's response (separation property). In this paper, high and low frequency multi-site stimulation patterns were applied to the living cortical networks. Two template-based classifiers, one based on Euclidean distance and a second based on a cross-correlation were then applied to measure the separation of the input-output relationship. The result was over a 95% (99.8% when nonstationarity is compensated) input reconstruction accuracy for the high and low frequency patterns, confirming the existence of the separation property in these biological networks.
Collapse
|
21
|
Corner MA. Spontaneous neuronal burst discharges as dependent and independent variables in the maturation of cerebral cortex tissue cultured in vitro: a review of activity-dependent studies in live 'model' systems for the development of intrinsically generated bioelectric slow-wave sleep patterns. ACTA ACUST UNITED AC 2008; 59:221-44. [PMID: 18722470 DOI: 10.1016/j.brainresrev.2008.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 08/01/2008] [Accepted: 08/05/2008] [Indexed: 10/21/2022]
Abstract
A survey is presented of recent experiments which utilize spontaneous neuronal spike trains as dependent and/or independent variables in developing cerebral cortex cultures when synaptic transmission is interfered with for varying periods of time. Special attention is given to current difficulties in selecting suitable preparations for carrying out biologically relevant developmental studies, and in applying spike-train analysis methods with sufficient resolution to detect activity-dependent age and treatment effects. A hierarchy of synchronized nested burst discharges which approximate early slow-wave sleep patterns in the intact organism is established as a stable basis for isolated cortex function. The complexity of reported long- and short-term homeostatic responses to experimental interference with synaptic transmission is reviewed, and the crucial role played by intrinsically generated bioelectric activity in the maturation of cortical networks is emphasized.
Collapse
Affiliation(s)
- Michael A Corner
- Netherlands Institute for Brain Research, Amsterdam, The Netherlands.
| |
Collapse
|
22
|
Taccola G, Margaryan G, Mladinic M, Nistri A. Kainate and metabolic perturbation mimicking spinal injury differentially contribute to early damage of locomotor networks in the in vitro neonatal rat spinal cord. Neuroscience 2008; 155:538-55. [PMID: 18602453 DOI: 10.1016/j.neuroscience.2008.06.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 05/13/2008] [Accepted: 06/06/2008] [Indexed: 11/29/2022]
Abstract
Acute spinal cord injury evolves rapidly to produce secondary damage even to initially spared areas. The result is loss of locomotion, rarely reversible in man. It is, therefore, important to understand the early pathophysiological processes which affect spinal locomotor networks. Regardless of their etiology, spinal lesions are believed to include combinatorial effects of excitotoxicity and severe stroke-like metabolic perturbations. To clarify the relative contribution by excitotoxicity and toxic metabolites to dysfunction of locomotor networks, spinal reflexes and intrinsic network rhythmicity, we used, as a model, the in vitro thoraco-lumbar spinal cord of the neonatal rat treated (1 h) with either kainate or a pathological medium (containing free radicals and hypoxic/aglycemic conditions), or their combination. After washout, electrophysiological responses were monitored for 24 h and cell damage analyzed histologically. Kainate suppressed fictive locomotion irreversibly, while it reversibly blocked neuronal excitability and intrinsic bursting induced by synaptic inhibition block. This result was associated with significant neuronal loss around the central canal. Combining kainate with the pathological medium evoked extensive, irreversible damage to the spinal cord. The pathological medium alone slowed down fictive locomotion and intrinsic bursting: these oscillatory patterns remained throughout without regaining their control properties. This phenomenon was associated with polysynaptic reflex depression and preferential damage to glial cells, while neurons were comparatively spared. Our model suggests distinct roles of excitotoxicity and metabolic dysfunction in the acute damage of locomotor networks, indicating that different strategies might be necessary to treat the various early components of acute spinal cord lesion.
Collapse
Affiliation(s)
- G Taccola
- Neurobiology Sector, International School for Advanced Studies, Via Beirut 2-4, 34014 Trieste, Italy; Spinal Person Injury Neurorehabilitation Applied Laboratory, Istituto di Medicina Fisica e Riabilitazione, 33100 Udine, Italy
| | | | | | | |
Collapse
|
23
|
Czarnecki A, Magloire V, Streit J. Local oscillations of spiking activity in organotypic spinal cord slice cultures. Eur J Neurosci 2008; 27:2076-88. [DOI: 10.1111/j.1460-9568.2008.06171.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
24
|
Taccola G, Nistri A. Differential modulation by tetraethylammonium of the processes underlying network bursting in the neonatal rat spinal cord in vitro. Neuroscience 2007; 146:1906-17. [PMID: 17467180 DOI: 10.1016/j.neuroscience.2007.03.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Revised: 03/08/2007] [Accepted: 03/22/2007] [Indexed: 10/23/2022]
Abstract
In the rat spinal cord in vitro, block of synaptic inhibition evokes persistent, regular disinhibited bursting which is a manifestation of the intrinsic network rhythmicity and is readily recorded from ventral roots. This model is advantageous to explore the network mechanisms controlling burst periodicity, and duration. We questioned the relative contribution of K+ conductances to spontaneous rhythmicity by investigating the effects of the broad K+ channel blocker tetraethylammonium (TEA). In TEA (10 mM) solution, bursts occurred at the same rate but became substantially longer, thus showing an unusual dissociation between mechanisms of burst periodicity and duration. In the presence of TEA, electrical stimulation of a single dorsal root or N-methyl-D-aspartate application (5 microM) could, however, fasten bursting associated with immediate decrease in burst length, thus demonstrating maintenance of short-term plasticity. Either riluzole (1 microM) or surgical sectioning that isolated a single spinal segment strongly depressed bursting which could, however, be revived by TEA. In the presence of TEA, the L-type channel blocker nifedipine (20 microM) made bursting faster and shorter. Our data are best explained by assuming that TEA increased network excitability to generate rhythmic bursting, an effect that was counteracted by intrinsic mechanisms, partly dependent on L-type channel activity, to retain standard periodicity. TEA-sensitive mechanisms were, nevertheless, an important process to regulate burst duration. Our results are consistent with the proposal of a hierarchical structural of the central pattern generator in which the circuits responsible for rhythmicity (the clock) drive the discharges of those creating the motor commands (pattern).
Collapse
Affiliation(s)
- G Taccola
- Neurobiology Sector, International School for Advanced Studies, via Beirut 2-4, 34014 Trieste, Italy.
| | | |
Collapse
|
25
|
Abstract
We previously showed in dissociated cultures of fetal rat spinal cord that disinhibition-induced bursting is based on intrinsic spiking, network recruitment, and a network refractory period after the bursts. A persistent sodium current (I(NaP)) underlies intrinsic spiking, which, by recurrent excitation, generates the bursting activity. Although full blockade of I(NaP) with riluzole disrupts such bursting, the present study shows that partial blockade of I(NaP) with low doses of riluzole maintains bursting activity with unchanged burst rate and burst duration. More important, low doses of riluzole turned bursts composed of persistent activity into bursts composed of oscillatory activity at around 5 Hz. In a search for the mechanisms underlying the generation of such intraburst oscillations, we found that activity-dependent synaptic depression was not changed with low doses of riluzole. On the other hand, low doses of riluzole strongly increased spike-frequency adaptation and led to early depolarization block when bursts were simulated by injecting long current pulses into single neurons in the absence of fast synaptic transmission. Phenytoin is another I(NaP) blocker. When applied in doses that reduced intrinsic activity by 80-90%, as did low doses of riluzole, it had no effect either on spike-frequency adaptation or on depolarization block. Nor did phenytoin induce intraburst oscillations after disinhibition. A theoretical model incorporating a depolarization block mechanism could reproduce the generation of intraburst oscillations at the network level. From these findings we conclude that riluzole-induced intraburst oscillations are a network-driven phenomenon whose major accommodation mechanism is depolarization block arising from strong sodium channel inactivation.
Collapse
Affiliation(s)
- Cédric Yvon
- Department of Physiology, University of Bern, Switzerland.
| | | | | |
Collapse
|
26
|
Jacobi S, Moses E. Variability and corresponding amplitude-velocity relation of activity propagating in one-dimensional neural cultures. J Neurophysiol 2007; 97:3597-606. [PMID: 17344374 DOI: 10.1152/jn.00608.2006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigate the propagation of neural activity along one-dimensional rat hippocampal cultures patterned in lines over multielectrode arrays. Activity occurs spontaneously or is evoked by local electrical or chemical stimuli, with different resulting propagation velocities and firing rate amplitudes. A variability of an order of magnitude in velocity and amplitude is observed in spontaneous activity. A linear relation between velocity and amplitude is identified. We define a measure for neuron activation synchrony and find that it correlates with front velocity and is higher for electrically evoked fronts. We present a model that explains the linear relation between amplitude and velocity, which highlights the role of synchrony. The relation to current models for signal propagation in neural media is discussed.
Collapse
Affiliation(s)
- Shimshon Jacobi
- Department of Physics of Complex Systems, The Weizmann Institute of Science, P.O. Box 26, Rehovot 76100, Israel.
| | | |
Collapse
|
27
|
Legrand JC, Darbon P, Streit J. Effects of brain-derived neurotrophic factor (BDNF) on activity mediated by NMDA receptors in rat spinal cord cultures. Neurosci Lett 2005; 390:145-9. [PMID: 16125841 DOI: 10.1016/j.neulet.2005.08.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Revised: 08/02/2005] [Accepted: 08/05/2005] [Indexed: 11/24/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is involved in the differentiation and the survival of neurons. It has also been shown to be associated with the regrowth of neurons of damaged spinal cord and the modulation of ionic currents by acting on sodium channels and NMDA receptors through tyrosine kinase B (TrkB) receptors. We investigated the effects of BDNF on rhythm generation induced by disinhibition in dissociated cultures from embryonic rat spinal cord (E14), with extracellular multisite recordings (MultiElectrode Arrays, MEAs) or intracellular patch-clamp recordings. Exogenous BDNF had only minor effects on the bursting by increasing the activity during the burst. This increase of activity is suggested to be mediated by a potentiation of the postsynaptic NMDA receptors because it has been found that BDNF potentiates the NMDA-evoked depolarization in cultures incubated with BDNF for 10 min. Possible direct effects of BDNF on sodium channels were also investigated by local application of BDNF to the soma of patched neurons but no depolarization was observed. Long-term application of BDNF strongly decreased the activity during the burst and also the number of active electrodes, possibly due to a decrease in network density.
Collapse
|