1
|
Manakhov P, Sidenmark L, Pfeuffer K, Gellersen H. Filtering on the Go: Effect of Filters on Gaze Pointing Accuracy During Physical Locomotion in Extended Reality. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2024; 30:7234-7244. [PMID: 39255110 DOI: 10.1109/tvcg.2024.3456153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Eye tracking filters have been shown to improve accuracy of gaze estimation and input for stationary settings. However, their effectiveness during physical movement remains underexplored. In this work, we compare common online filters in the context of physical locomotion in extended reality and propose alterations to improve them for on-the-go settings. We conducted a computational experiment where we simulate performance of the online filters using data on participants attending visual targets located in world-, path-, and two head-based reference frames while standing, walking, and jogging. Our results provide insights into the filters' effectiveness and factors that affect it, such as the amount of noise caused by locomotion and differences in compensatory eye movements, and demonstrate that filters with saccade detection prove most useful for on-the-go settings. We discuss the implications of our findings and conclude with guidance on gaze data filtering for interaction in extended reality.
Collapse
|
2
|
Büki B, Migliaccio AA. The vergence-mediated gain increase: Physiology and clinical relevance. J Vestib Res 2023; 33:173-186. [PMID: 37005906 DOI: 10.3233/ves-220133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
BACKGROUND During near-viewing, the vestibulo-ocular reflex (VOR) response/gain increases to compensate for the relatively larger translation of the eyes with respect to the target. OBJECTIVE To review vergence-mediated gain increase (VMGI) testing methods stimuli and responses (latency and amplitude), peripheral/central pathways and clinical relevance. METHODS The authors discuss publications listed in PUBMED since 1980 in the light of their own studies. RESULTS The VMGI can be measured during rotational, linear and combined head accelerations. It has short-latency, non-compensatory amplitude, and relies on irregularly discharging peripheral afferents and their pathways. It is driven by a combination of perception, visual-context and internal modelling. CONCLUSIONS Currently, there are technical barriers that hinder VMGI measurement in the clinic. However, the VMGI may have diagnostic value, especially with regards to measuring otolith function. The VMGI also may have potential value in rehabilitation by providing insight about a patient's lesion and how to best tailor a rehabilitation program for them, that potentially includes VOR adaptation training during near-viewing.
Collapse
Affiliation(s)
- Bela Büki
- Department of Otolaryngology, Karl Landsteiner University Hospital Krems, Mitterweg, Austria
| | - Americo A Migliaccio
- Balance and Vision Laboratory, Neuroscience Research Australia, Randwick, NSW, Australia
- Graduate School of Biomedical Engineering, University of NSW, Sydney, NSW, Australia
- Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, USA
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
3
|
Rincon-Gonzalez L, Selen LPJ, Halfwerk K, Koppen M, Corneil BD, Medendorp WP. Decisions in motion: vestibular contributions to saccadic target selection. J Neurophysiol 2016; 116:977-85. [PMID: 27281751 DOI: 10.1152/jn.01071.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 06/06/2016] [Indexed: 11/22/2022] Open
Abstract
The natural world continuously presents us with many opportunities for action, and thus a process of target selection must precede action execution. While there has been considerable progress in understanding target selection in stationary environments, little is known about target selection when we are in motion. Here we investigated the effect of self-motion signals on saccadic target selection in a dynamic environment. Human subjects were sinusoidally translated (f = 0.6 Hz, 30-cm peak-to-peak displacement) along an interaural axis with a vestibular sled. During the motion two visual targets were presented asynchronously but equidistantly on either side of fixation. Subjects had to look at one of these targets as quickly as possible. With an adaptive approach, the time delay between these targets was adjusted until the subject selected both targets equally often. We determined this balanced time delay for different phases of the motion in order to distinguish the effects of body acceleration and velocity on saccadic target selection. Results show that acceleration (or position, as these are indistinguishable during sinusoidal motion), but not velocity, affects target selection for saccades. Subjects preferred to look at targets in the direction of the acceleration-the leftward target was preferred when the sled accelerated to the left, and vice versa. Saccadic reaction times mimicked this selection bias by being reliably shorter to targets in the direction of acceleration. Our results provide evidence that saccade target selection mechanisms are modulated by self-motion signals, which could be derived directly from the otolith system.
Collapse
Affiliation(s)
- L Rincon-Gonzalez
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands; and
| | - L P J Selen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands; and
| | - K Halfwerk
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands; and
| | - M Koppen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands; and
| | - B D Corneil
- Departments of Physiology and Pharmacology, and Psychology, Brain and Mind Institute, Robarts Research Institute, Western University, London, Ontario, Canada
| | - W P Medendorp
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands; and
| |
Collapse
|
4
|
Fadaee SB, Migliaccio AA. The effect of retinal image error update rate on human vestibulo-ocular reflex gain adaptation. Exp Brain Res 2015; 234:1085-94. [DOI: 10.1007/s00221-015-4535-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/15/2015] [Indexed: 10/22/2022]
|
5
|
Borg O, Casanova R, Bootsma RJ. Reading from a Head-Fixed Display during Walking: Adverse Effects of Gaze Stabilization Mechanisms. PLoS One 2015; 10:e0129902. [PMID: 26053622 PMCID: PMC4460068 DOI: 10.1371/journal.pone.0129902] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/14/2015] [Indexed: 11/18/2022] Open
Abstract
Reading performance during standing and walking was assessed for information presented on earth-fixed and head-fixed displays by determining the minimal duration during which a numerical time stimulus needed to be presented for 50% correct naming answers. Reading from the earth-fixed display was comparable during standing and walking, with optimal performance being attained for visual character sizes in the range of 0.2° to 1°. Reading from the head-fixed display was impaired for small (0.2-0.3°) and large (5°) visual character sizes, especially during walking. Analysis of head and eye movements demonstrated that retinal slip was larger during walking than during standing, but remained within the functional acuity range when reading from the earth-fixed display. The detrimental effects on performance of reading from the head-fixed display during walking could be attributed to loss of acuity resulting from large retinal slip. Because walking activated the angular vestibulo-ocular reflex, the resulting compensatory eye movements acted to stabilize gaze on the information presented on the earth-fixed display but destabilized gaze from the information presented on the head-fixed display. We conclude that the gaze stabilization mechanisms that normally allow visual performance to be maintained during physical activity adversely affect reading performance when the information is presented on a display attached to the head.
Collapse
Affiliation(s)
- Olivier Borg
- Institut des Sciences du Mouvement, Aix-Marseille Université, CNRS, Marseille, France
- Oxylane R&D, Villeneuve d’Ascq, France
| | - Remy Casanova
- Institut des Sciences du Mouvement, Aix-Marseille Université, CNRS, Marseille, France
| | - Reinoud J. Bootsma
- Institut des Sciences du Mouvement, Aix-Marseille Université, CNRS, Marseille, France
- * E-mail:
| |
Collapse
|
6
|
Chim D, Lasker DM, Migliaccio AA. Visual contribution to the high-frequency human angular vestibulo-ocular reflex. Exp Brain Res 2013; 230:127-35. [PMID: 23852322 DOI: 10.1007/s00221-013-3635-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 06/26/2013] [Indexed: 12/01/2022]
Abstract
The vestibulo-ocular reflex (VOR) acts to maintain images stable on the retina by rotating the eyes in exactly the opposite direction, but with equal magnitude, to head velocity. When viewing a near target, this reflex has an increased response to compensate for the translation of the eyes relative to the target that acts to reduce retinal image slip. Previous studies have shown that retinal velocity error provides an important visual feedback signal to increase the low-frequency (<1 Hz) VOR response during near viewing. We sought to determine whether initial eye position and retinal image position error could provide enough information to substantially increase the high-frequency VOR gain (eye velocity/head velocity) during near viewing. Ten human subjects were tested using the scleral search coil technique during horizontal head impulses under different lighting conditions (constant dark, strobe light at 0.5, 1, 2, 4, 10, 15 Hz, constant light) while viewing near (9.5 ± 1.3 cm) and far (104 cm) targets. Our results showed that the VOR gain increased during near viewing compared to far viewing, even during constant dark. For the near target, there was an increase in VOR gain with increasing strobe frequency from 1.17 ± 0.17 in constant dark to 1.36 ± 0.27 in constant light, a 21 ± 9 % increase. For the far target, strobe frequency had no effect. Presentation order of strobe frequency (i.e. 0.5-15 vs. 15-0.5 Hz) did not affect the gain, but it did affect the vergence angle (angle between the two eye's lines of sight). The VOR gain and vergence angles were constant during each trial. Our findings show that a retinal position error signal helps increase the vergence angle and could be invoking vestibular adaptation mechanisms to increase the high-frequency VOR response during near viewing. This is in contrast to the low-frequency VOR that depends more on retinal velocity error and predictive adaptation mechanisms.
Collapse
Affiliation(s)
- Daniel Chim
- Neuroscience Research Australia and the University of New South Wales, Sydney, Australia
| | | | | |
Collapse
|
7
|
Dits J, King WM, van der Steen J. Scaling of compensatory eye movements during translations: virtual versus real depth. Neuroscience 2013; 246:73-81. [PMID: 23639883 DOI: 10.1016/j.neuroscience.2013.04.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/12/2013] [Accepted: 04/15/2013] [Indexed: 10/26/2022]
Abstract
Vestibulo-ocular reflexes are the fastest compensatory reflex systems. One of these is the translational vestibulo-ocular reflex (TVOR) which stabilizes the gaze at a given fixation point during whole body translations. For a proper response of the TVOR the eyes have to counter rotate in the head with a velocity that is inversely scaled to viewing distance of the target. It is generally assumed that scaling of the TVOR is automatically coupled to vergence angle at the brainstem level. However, different lines of evidence also argue that in humans scaling of the TVOR also depends on a mechanism that pre-sets gain on a priori knowledge of target distance. To discriminate between these two possibilities we used a real target paradigm with vergence angle coupled to distance and a virtual target paradigm with vergence angle dissociated from target distance. We compared TVOR responses in six subjects who underwent lateral sinusoidal whole-body translations at 1 and 2 Hz. Real targets varied between distance of 50 and 22.4 cm in front of the subjects, whereas the virtual targets consisting of a green and red light emitting diode (LED) were physically located at 50 cm from the subject. Red and green LED's were dichoptically viewed. By shifting the red LED relative to the green LED we created a range of virtual viewing distances where vergence angle changed but the ideal kinematic eye velocity was always the same. Eye velocity data recorded with virtual targets were compared to eye velocity data recorded with real targets. We also used flashing targets (flash frequency 1 Hz, duration 5 ms). During the real, continuous visible targets condition scaling of compensatory eye velocity with vergence angle was nearly perfect. During viewing of virtual targets, and with flashed targets compensatory eye velocity only weakly correlated to vergence angle, indicating that vergence angle is only partially coupled to compensatory eye velocity during translation. Our data suggest that in humans vergence angle as a measure of target distance estimation has only limited use for automatic TVOR scaling.
Collapse
Affiliation(s)
- J Dits
- Department of Neuroscience, Erasmus University Medical Centre Rotterdam, Dr. Molewaterplein 50, 3000 DR Rotterdam, The Netherlands
| | | | | |
Collapse
|
8
|
Walker M, Liao K. The human translational vestibulo-ocular reflex in response to complex motion. Ann N Y Acad Sci 2011; 1233:242-8. [PMID: 21951000 DOI: 10.1111/j.1749-6632.2011.06167.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We studied the translational vestibulo-ocular reflex (tVOR) in four healthy human subjects during complex, unpredictable sum-of-sines head motion (combination of 0.73, 1.33, 1.93, and 2.93 Hz), while subjects viewed a target 15 cm away. Ideal eye velocity was calculated from recorded head motion; actual eye velocity was measured with scleral coils. The gain and phase for each frequency component was determined by least-squares optimization. Gain averaged approximately 40% and did not change with frequency; phase lag increased with frequency to a maximum of 66°. Fitting actual to ideal eye velocity predicted a tVOR latency of 48 m/s for vertical and 38 m/s for horizontal translation. These findings provide further evidence that the normal tVOR is considerably undercompensatory, even at low frequencies if the stimulus is not predictable. The similarity of this behavior to that of pursuit suggests that these two eye movements may share some aspects of neural processing.
Collapse
Affiliation(s)
- Mark Walker
- Department of Neurology, Case Western Reserve University, Cleveland, Ohio, USA.
| | | |
Collapse
|
9
|
Ronsse R, White O, Lefèvre P. Computation of gaze orientation under unrestrained head movements. J Neurosci Methods 2007; 159:158-69. [PMID: 16890993 DOI: 10.1016/j.jneumeth.2006.06.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2006] [Revised: 06/07/2006] [Accepted: 06/22/2006] [Indexed: 10/24/2022]
Abstract
Given the high relevance of visual input to human behavior, it is often important to precisely monitor the spatial orientation of the visual axis. One popular and accurate technique for measuring gaze orientation is based on the dual search coil. This technique does not allow for very large displacements of the subject, however, and is not robust with respect to translations of the head. More recently, less invasive procedures have been developed that record eye movements with camera-based systems attached to a helmet worn by the subject. Computational algorithms have also been developed that can calibrate eye orientation when the head's position is fixed. Given that camera-based systems measure the eye's position in its orbit, however, the reconstruction of gaze orientation is not as straightforward when the head is allowed to move. In this paper, we propose a new algorithm and calibration method to compute gaze orientation under unrestrained head conditions. Our method requires only the accurate measurement of orbital eye position (for instance, with a camera-based system), and the position of three points on the head. The calculations are expressed in terms of linear algebra, so can easily be interpreted and related to the geometry of the human body. Our calibration method has been tested experimentally and validated against independent data, proving that is it robust even under large translations, rotations, and torsions of the head.
Collapse
Affiliation(s)
- Renaud Ronsse
- Department of Electrical Engineering and Computer Science (Montefiore Institute), Université de Liège, Grande Traverse 10 (B28), B-4000 Liège, Belgium.
| | | | | |
Collapse
|