1
|
Chettouf S, Rueda-Delgado LM, de Vries R, Ritter P, Daffertshofer A. Are unimanual movements bilateral? Neurosci Biobehav Rev 2020; 113:39-50. [DOI: 10.1016/j.neubiorev.2020.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/07/2020] [Accepted: 03/02/2020] [Indexed: 12/31/2022]
|
2
|
Begliomini C, Sartori L, Di Bono MG, Budisavljević S, Castiello U. The Neural Correlates of Grasping in Left-Handers: When Handedness Does Not Matter. Front Neurosci 2018; 12:192. [PMID: 29666567 PMCID: PMC5891894 DOI: 10.3389/fnins.2018.00192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 03/09/2018] [Indexed: 11/13/2022] Open
Abstract
Neurophysiological studies showed that in macaques, grasp-related visuomotor transformations are supported by a circuit involving the anterior part of the intraparietal sulcus, the ventral and the dorsal region of the premotor area. In humans, a similar grasp-related circuit has been revealed by means of neuroimaging techniques. However, the majority of "human" studies considered movements performed by right-handers only, leaving open the question of whether the dynamics underlying motor control during grasping is simply reversed in left-handers with respect to right-handers or not. To address this question, a group of left-handed participants has been scanned with functional magnetic resonance imaging while performing a precision grasping task with the left or the right hand. Dynamic causal modeling was used to assess how brain regions of the two hemispheres contribute to grasping execution and whether the intra- and inter-hemispheric connectivity is modulated by the choice of the performing hand. Results showed enhanced inter-hemispheric connectivity between anterior intraparietal and dorsal premotor cortices during grasping execution with the left dominant hand (LDH) (e.g., right hemisphere) compared to the right (e.g., left hemisphere). These findings suggest that that the left hand, although dominant and theoretically more skilled in left handers, might need additional resources in terms of the visuomotor control and on-line monitoring to accomplish a precision grasping movement. The results are discussed in light of theories on the modulation of parieto-frontal networks during the execution of prehensile movements, providing novel evidence supporting the hypothesis of a handedness-independent specialization of the left hemisphere in visuomotor control.
Collapse
Affiliation(s)
- Chiara Begliomini
- Dipartimento di Psicologia Generale, Università degli Studi di Padova, Padua, Italy.,Padua Neuroscience Center, Padua, Italy
| | - Luisa Sartori
- Dipartimento di Psicologia Generale, Università degli Studi di Padova, Padua, Italy.,Padua Neuroscience Center, Padua, Italy
| | - Maria G Di Bono
- Dipartimento di Psicologia Generale, Università degli Studi di Padova, Padua, Italy
| | | | - Umberto Castiello
- Dipartimento di Psicologia Generale, Università degli Studi di Padova, Padua, Italy
| |
Collapse
|
3
|
Pollok B, Overhagen CL, Keitel A, Krause V. Transcranial direct current stimulation (tDCS) applied to the left dorsolateral premotor cortex (dPMC) interferes with rhythm reproduction. Sci Rep 2017; 7:11509. [PMID: 28912542 PMCID: PMC5599649 DOI: 10.1038/s41598-017-11980-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 08/30/2017] [Indexed: 11/09/2022] Open
Abstract
Movement timing in the sub-second range engages a brain network comprising cortical and sub-cortical areas. The present study aims at investigating the functional significance of the left dorsolateral premotor cortex (dPMC) for precise movement timing as determined by sensorimotor synchronization and rhythm reproduction. To this end, 18 healthy volunteers performed an auditorily paced synchronization-continuation task with the right hand. A simple reaction time task served as control condition. Transcranial direct current stimulation (tDCS) was applied over the left dPMC in order to modulate cortical excitability either with anodal or cathodal polarity or as sham stimulation. TDCS was applied for 10 minutes, respectively on separate days. For the continuation task the analysis revealed significantly smaller inter-tap intervals (ITIs) following cathodal tDCS suggesting movement hastening as well as a trend towards larger ITIs following anodal stimulation suggesting movement slowing. No significant effect was found following sham stimulation. Neither for synchronization nor for reaction time tasks significant polarity-specific effects emerged. The data suggest the causal involvement of the dPMC in temporally precisereproduction of isochronous rhythms rather than sensorimotor synchronization. The present findings support the hypothesis that different cortical brain areas within the motor-control-network distinctively contribute to movement timing in the sub-second range.
Collapse
Affiliation(s)
- B Pollok
- Heinrich-Heine University Duesseldorf, Medical Faculty, Institute of Clinical Neuroscience and Medical Psychology, D-40225, Duesseldorf, Germany.
| | - C L Overhagen
- Heinrich-Heine University Duesseldorf, Medical Faculty, Institute of Clinical Neuroscience and Medical Psychology, D-40225, Duesseldorf, Germany
| | - A Keitel
- Heinrich-Heine University Duesseldorf, Medical Faculty, Institute of Clinical Neuroscience and Medical Psychology, D-40225, Duesseldorf, Germany
| | - V Krause
- Heinrich-Heine University Duesseldorf, Medical Faculty, Institute of Clinical Neuroscience and Medical Psychology, D-40225, Duesseldorf, Germany
| |
Collapse
|
4
|
O'Regan L, Spapé MM, Serrien DJ. Motor Timing and Covariation with Time Perception: Investigating the Role of Handedness. Front Behav Neurosci 2017; 11:147. [PMID: 28860978 PMCID: PMC5559439 DOI: 10.3389/fnbeh.2017.00147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/24/2017] [Indexed: 11/13/2022] Open
Abstract
Time is a fundamental dimension of our behavior and enables us to guide our actions and to experience time such as predicting collisions or listening to music. In this study, we investigate the regulation and covariation of motor timing and time perception functions in left- and right-handers who are characterized by distinct brain processing mechanisms for cognitive-motor control. To this purpose, we use a combination of tasks that assess the timed responses during movements and the perception of time intervals. The results showed a positive association across left- and right-handers between movement-driven timing and perceived interval duration when adopting a preferred tempo, suggesting cross-domain coupling between both abilities when an intrinsic timescale is present. Handedness guided motor timing during externally-driven conditions that required cognitive intervention, which specifies the relevance of action expertise for the performance of timed-based motor activities. Overall, our results reveal that individual variation across domain-general and domain-specific levels of organization plays a steering role in how one predicts, perceives and experiences time, which accordingly impacts on cognition and behavior.
Collapse
Affiliation(s)
- Louise O'Regan
- School of Psychology, University of NottinghamNottingham, United Kingdom
| | - Michiel M Spapé
- Department of Psychology, Liverpool Hope UniversityLiverpool, United Kingdom
| | - Deborah J Serrien
- School of Psychology, University of NottinghamNottingham, United Kingdom
| |
Collapse
|
5
|
Aune TK, Ettema G, Vereijken B. Bilateral Asymmetry in Upper Extremities Is More Pronounced in Distal Compared to Proximal Joints. J Mot Behav 2015; 48:143-52. [DOI: 10.1080/00222895.2015.1056766] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Begliomini C, Sartori L, Miotto D, Stramare R, Motta R, Castiello U. Exploring manual asymmetries during grasping: a dynamic causal modeling approach. Front Psychol 2015; 6:167. [PMID: 25759677 PMCID: PMC4338815 DOI: 10.3389/fpsyg.2015.00167] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/02/2015] [Indexed: 11/13/2022] Open
Abstract
Recording of neural activity during grasping actions in macaques showed that grasp-related sensorimotor transformations are accomplished in a circuit constituted by the anterior part of the intraparietal sulcus (AIP), the ventral (F5) and the dorsal (F2) region of the premotor area. In humans, neuroimaging studies have revealed the existence of a similar circuit, involving the putative homolog of macaque areas AIP, F5, and F2. These studies have mainly considered grasping movements performed with the right dominant hand and only a few studies have measured brain activity associated with a movement performed with the left non-dominant hand. As a consequence of this gap, how the brain controls for grasping movement performed with the dominant and the non-dominant hand still represents an open question. A functional magnetic resonance imaging (fMRI) experiment has been conducted, and effective connectivity (dynamic causal modeling, DCM) was used to assess how connectivity among grasping-related areas is modulated by hand (i.e., left and right) during the execution of grasping movements toward a small object requiring precision grasping. Results underlined boosted inter-hemispheric couplings between dorsal premotor cortices during the execution of movements performed with the left rather than the right dominant hand. More specifically, they suggest that the dorsal premotor cortices may play a fundamental role in monitoring the configuration of fingers when grasping movements are performed by either the right and the left hand. This role becomes particularly evident when the hand less-skilled (i.e., the left hand) to perform such action is utilized. The results are discussed in light of recent theories put forward to explain how parieto-frontal connectivity is modulated by the execution of prehensile movements.
Collapse
Affiliation(s)
- Chiara Begliomini
- Department of General Psychology and Center for Cognitive Neuroscience, University of Padova Padova, Italy
| | - Luisa Sartori
- Department of General Psychology and Center for Cognitive Neuroscience, University of Padova Padova, Italy
| | - Diego Miotto
- Department of Medicine, University of Padova Padova, Italy
| | | | | | - Umberto Castiello
- Department of General Psychology and Center for Cognitive Neuroscience, University of Padova Padova, Italy
| |
Collapse
|
7
|
Cortical representation of different motor rhythms during bimanual movements. Exp Brain Res 2012; 223:489-504. [DOI: 10.1007/s00221-012-3276-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 09/12/2012] [Indexed: 10/27/2022]
|
8
|
Premotor and occipital theta asymmetries as discriminators of memory- and stimulus-guided tasks. Brain Res Bull 2012; 87:103-8. [DOI: 10.1016/j.brainresbull.2011.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 10/20/2011] [Accepted: 10/20/2011] [Indexed: 11/23/2022]
|
9
|
Continuous theta burst stimulation over the left pre-motor cortex affects sensorimotor timing accuracy and supraliminal error correction. Brain Res 2011; 1410:101-11. [PMID: 21802662 DOI: 10.1016/j.brainres.2011.06.062] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 06/23/2011] [Accepted: 06/27/2011] [Indexed: 11/21/2022]
Abstract
Adjustments to movement in response to changes in our surroundings are common in everyday behavior. Previous research has suggested that the left pre-motor cortex (PMC) is specialized for the temporal control of movement and may play a role in temporal error correction. The aim of this study was to determine the role of the left PMC in sensorimotor timing and error correction using theta burst transcranial magnetic stimulation (TBS). In Experiment 1, subjects performed a sensorimotor synchronization task (SMS) with the left and the right hand before and after either continuous or intermittent TBS (cTBS or iTBS). Timing accuracy was assessed during synchronized finger tapping with a regular auditory pacing stimulus. Responses following perceivable local timing shifts in the pacing stimulus (phase shifts) were used to measure error correction. Suppression of the left PMC using cTBS decreased timing accuracy because subjects tapped further away from the pacing tones and tapping variability increased. In addition, error correction responses returned to baseline tap-tone asynchrony levels faster following negative shifts and no overcorrection occurred following positive shifts after cTBS. However, facilitation of the left PMC using iTBS did not affect timing accuracy or error correction performance. Experiment 2 revealed that error correction performance may change with practice, independent of TBS. These findings provide evidence for a role of the left PMC in both sensorimotor timing and error correction in both hands. We propose that the left PMC may be involved in voluntarily controlled phase correction responses to perceivable timing shifts.
Collapse
|
10
|
Franz EA, Miller JO. Are the basal ganglia critical in producing redundancy gain effects on simple sensorimotor responses? An investigation on the effects of Parkinson's disease. Neuropsychologia 2011; 49:1267-1274. [PMID: 21320515 DOI: 10.1016/j.neuropsychologia.2011.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 12/06/2010] [Accepted: 02/07/2011] [Indexed: 11/24/2022]
Abstract
Redundancy gain (RG) is a well-known effect in the experimental psychology literature which is thought to reflect integration of sensory information. RG is a facilitation in speed of responding on a detection task when two stimuli are presented at once compared to when one stimulus is presented alone. Even though sensorimotor tasks involving integration of sensory information form the basis of a large repertoire of human skilled actions, the neural basis of reliable effects such as RG remains elusive. The present study examines whether the integrity of the basal ganglia system is likely to be critical for RG effects to occur. Based on a thorough analysis of performance on a standard paradigm of RG (and on the related paradigm of crossed-uncrossed differences: CUDs) in patients with mild to moderate Parkinson's disease and matched controls, we found virtually no differences between groups. We conclude that normal RG and CUD effects are not likely to rely critically on the BG.
Collapse
Affiliation(s)
| | - Jeff O Miller
- Department of Psychology, University of Otago, New Zealand.
| |
Collapse
|
11
|
Rizzo V, Bove M, Naro A, Tacchino A, Mastroeni C, Avanzino L, Crupi D, Morgante F, Siebner H, Quartarone A. Associative cortico-cortical plasticity may affect ipsilateral finger opposition movements. Behav Brain Res 2011; 216:433-9. [DOI: 10.1016/j.bbr.2010.08.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 08/06/2010] [Accepted: 08/24/2010] [Indexed: 11/29/2022]
|
12
|
Abstract
The synchronous discharge of neuronal assemblies is thought to facilitate communication between areas within distributed networks in the human brain. This oscillatory activity is especially interesting, given the pathological modulation of specific frequencies in diseases affecting the motor system. Many studies investigating oscillatory activity have focused on same frequency, or linear, coupling between areas of a network. In this study, our aim was to establish a functional architecture in the human motor system responsible for induced responses as measured in normal subjects with magnetoencephalography. Specifically, we looked for evidence for additional nonlinear (between-frequency) coupling among neuronal sources and, in particular, whether nonlinearities were found predominantly in connections within areas (intrinsic), between areas (extrinsic) or both. We modeled the event-related modulation of spectral responses during a simple hand-grip using dynamic casual modeling. We compared models with and without nonlinear connections under conditions of symmetric and asymmetric interhemispheric connectivity. Bayesian model comparison suggested that the task-dependent motor network was asymmetric during right hand movements. Furthermore, it revealed very strong evidence for nonlinear coupling between sources in this distributed network, but interactions among frequencies within a source appeared linear in nature. Our results provide empirical evidence for nonlinear coupling among distributed neuronal sources in the motor system and that these play an important role in modulating spectral responses under normal conditions.
Collapse
|
13
|
Pollok B, Rothkegel H, Schnitzler A, Paulus W, Lang N. The effect of rTMS over left and right dorsolateral premotor cortex on movement timing of either hand. Eur J Neurosci 2008; 27:757-64. [PMID: 18279328 DOI: 10.1111/j.1460-9568.2008.06044.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bettina Pollok
- Department of Neurology, Heinrich-Heine University, Duesseldorf, Germany.
| | | | | | | | | |
Collapse
|