1
|
Yeo SS, Jang TS, Yun SH. Sensorimotor adaptation in spatial orientation task: a fNIRS study. Sci Rep 2023; 13:15160. [PMID: 37704674 PMCID: PMC10499899 DOI: 10.1038/s41598-023-42416-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023] Open
Abstract
In sensorimotor conflicts, the brain forms and updates a new sensorimotor relationship through sensorimotor integration. As humans adapt to new sensorimotor mapping, goal-directed movements become increasingly precise. Using functional near-infrared spectroscopy, we investigated the changes in cortical activity during sensorimotor adaptation in a spatial orientation task with sensorimotor conflict. Individuals performed a reversed spatial orientation training in which the visual feedback guiding hand movements was reversed. We measured cortical activity and spatial orientation performance, including the response time, completion number, error, and accuracy. The results revealed the continuous activation in the left SMG during sensorimotor adaptation and decreased activation in the right SAC, AG and SMG after sensorimotor adaptation. These findings indicated the contribution of the left SMG to sensorimotor adaptation and the improved efficiency of cortical activity after sensorimotor adaptation, respectively. Our studies suggest the neural mechanisms related to sensorimotor adaptation to a reversed spatial orientation task.
Collapse
Affiliation(s)
- Sang Seok Yeo
- Department of Physical Therapy, College of Health and Welfare Sciences, Dankook University, Cheonan, Chungcheongnam-do, Republic of Korea
| | - Tae Su Jang
- Department of Health Administration, College of Health and Welfare Sciences, Dankook University, Cheonan, Chungcheongnam-do, Republic of Korea
| | - Seong Ho Yun
- Department of Public Health Sciences, Graduate School, Dankook University, Cheonan, Chungcheongnam-do, Republic of Korea.
| |
Collapse
|
2
|
Joshi S, Weedon BD, Esser P, Liu YC, Springett DN, Meaney A, Inacio M, Delextrat A, Kemp S, Ward T, Izadi H, Dawes H, Ayaz H. Neuroergonomic assessment of developmental coordination disorder. Sci Rep 2022; 12:10239. [PMID: 35715433 PMCID: PMC9206023 DOI: 10.1038/s41598-022-13966-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 05/31/2022] [Indexed: 12/29/2022] Open
Abstract
Until recently, neural assessments of gross motor coordination could not reliably handle active tasks, particularly in realistic environments, and offered a narrow understanding of motor-cognition. By applying a comprehensive neuroergonomic approach using optical mobile neuroimaging, we probed the neural correlates of motor functioning in young people with Developmental Coordination Disorder (DCD), a motor-learning deficit affecting 5-6% of children with lifelong complications. Neural recordings using fNIRS were collected during active ambulatory behavioral task execution from 37 Typically Developed and 48 DCD Children who performed cognitive and physical tasks in both single and dual conditions. This is the first of its kind study targeting regions of prefrontal cortical dysfunction for identification of neuropathophysiology for DCD during realistic motor tasks and is one of the largest neuroimaging study (across all modalities) involving DCD. We demonstrated that DCD is a motor-cognitive disability, as gross motor /complex tasks revealed neuro-hemodynamic deficits and dysfunction within the right middle and superior frontal gyri of the prefrontal cortex through functional near infrared spectroscopy. Furthermore, by incorporating behavioral performance, decreased neural efficiency in these regions were revealed in children with DCD, specifically during motor tasks. Lastly, we provide a framework, evaluating disorder impact in ecologically valid contexts to identify when and for whom interventional approaches are most needed and open the door for precision therapies.
Collapse
Affiliation(s)
- Shawn Joshi
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA.
- College of Medicine, Drexel University, Philadelphia, PA, USA.
- Centre for Movement, Occupation and Rehabilitation Services, Oxford Brookes University, Oxford, UK.
- Nuffield Department of Clinical Neurology, University of Oxford, Oxford, UK.
| | - Benjamin D Weedon
- Centre for Movement, Occupation and Rehabilitation Services, Oxford Brookes University, Oxford, UK
- Nuffield Department of Clinical Neurology, University of Oxford, Oxford, UK
| | - Patrick Esser
- Centre for Movement, Occupation and Rehabilitation Services, Oxford Brookes University, Oxford, UK
- Nuffield Department of Clinical Neurology, University of Oxford, Oxford, UK
| | - Yan-Ci Liu
- Centre for Movement, Occupation and Rehabilitation Services, Oxford Brookes University, Oxford, UK
- Nuffield Department of Clinical Neurology, University of Oxford, Oxford, UK
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan
- Physical Therapy Center, National Taiwan University Hospita, Taipei, Taiwan
| | - Daniella N Springett
- Centre for Movement, Occupation and Rehabilitation Services, Oxford Brookes University, Oxford, UK
- Nuffield Department of Clinical Neurology, University of Oxford, Oxford, UK
- Department for Health, University of Bath, Bath, UK
| | - Andy Meaney
- Centre for Movement, Occupation and Rehabilitation Services, Oxford Brookes University, Oxford, UK
- NHS Foundation Trust, Oxford University Hospitals, Oxford, UK
| | - Mario Inacio
- Centre for Movement, Occupation and Rehabilitation Services, Oxford Brookes University, Oxford, UK
- Research Center in Sports Sciences, Health Sciences and Human Development, University of Maia, Porto, Portugal
| | - Anne Delextrat
- Centre for Movement, Occupation and Rehabilitation Services, Oxford Brookes University, Oxford, UK
| | - Steve Kemp
- Centre for Movement, Occupation and Rehabilitation Services, Oxford Brookes University, Oxford, UK
| | - Tomás Ward
- Insight SFI Research Centre for Data Analytics, Dublin City University, Dublin, Ireland
| | - Hooshang Izadi
- School of Engineering, Computing and Mathematics, School of Technology, Design and Environment, Oxford Brookes University, Oxford, UK
| | - Helen Dawes
- Nuffield Department of Clinical Neurology, University of Oxford, Oxford, UK
- Intersect@Exeter, College of Medicine and Health, University of Exeter, Exeter, UK
- Oxford Health BRC, University of Oxford, Oxford, UK
| | - Hasan Ayaz
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
- Department of Psychological and Brain Sciences, College of Arts and Sciences, Drexel University, Philadelphia, PA, USA
- Drexel Solution Institute, Drexel University, Philadelphia, PA, USA
- Department of Family and Community Health, University of Pennsylvania, Philadelphia, PA, USA
- Center for Injury Research and Prevention, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
3
|
Ohata R, Ogawa K, Imamizu H. Neuroimaging Examination of Driving Mode Switching Corresponding to Changes in the Driving Environment. Front Hum Neurosci 2022; 16:788729. [PMID: 35250514 PMCID: PMC8895376 DOI: 10.3389/fnhum.2022.788729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 01/31/2022] [Indexed: 11/23/2022] Open
Abstract
Car driving is supported by perceptual, cognitive, and motor skills trained through continuous daily practice. One of the skills that characterize experienced drivers is to detect changes in the driving environment and then flexibly switch their driving modes in response to the changes. Previous functional neuroimaging studies on motor control investigated the mechanisms underlying behaviors adaptive to changes in control properties or parameters of experimental devices such as a computer mouse or a joystick. The switching of multiple internal models mainly engages adaptive behaviors and underlies the interplay between the cerebellum and frontoparietal network (FPN) regions as the neural process. However, it remains unclear whether the neural mechanisms identified in previous motor control studies also underlie practical driving behaviors. In the current study, we measure functional magnetic resonance imaging (fMRI) activities while participants control a realistic driving simulator inside the MRI scanner. Here, the accelerator sensitivity of a virtual car is abruptly changed, requiring participants to respond to this change flexibly to maintain stable driving. We first compare brain activities before and after the sensitivity change. As a result, sensorimotor areas, including the left cerebellum, increase their activities after the sensitivity change. Moreover, after the change, activity significantly increases in the inferior parietal lobe (IPL) and dorsolateral prefrontal cortex (DLPFC), parts of the FPN regions. By contrast, the posterior cingulate cortex, a part of the default mode network, deactivates after the sensitivity change. Our results suggest that the neural bases found in previous experimental studies can serve as the foundation of adaptive driving behaviors. At the same time, this study also highlights the unique contribution of non-motor regions to addressing the high cognitive demands of driving.
Collapse
Affiliation(s)
- Ryu Ohata
- Department of Psychology, Graduate School of Humanities and Sociology, The University of Tokyo, Tokyo, Japan
- *Correspondence: Ryu Ohata,
| | - Kenji Ogawa
- Department of Psychology, Graduate School of Humanities and Human Sciences, Hokkaido University, Sapporo, Japan
| | - Hiroshi Imamizu
- Department of Psychology, Graduate School of Humanities and Sociology, The University of Tokyo, Tokyo, Japan
- Cognitive Mechanisms Laboratories, Advanced Telecommunications Research Institute International (ATR), Kyoto, Japan
- Research Into Artifacts, Center for Engineering, The University of Tokyo, Tokyo, Japan
- Hiroshi Imamizu,
| |
Collapse
|
4
|
Single-Pulse TMS over the Parietal Cortex Does Not Impair Sensorimotor Perturbation-Induced Changes in Motor Commands. eNeuro 2020; 7:ENEURO.0209-19.2020. [PMID: 32108021 PMCID: PMC7101479 DOI: 10.1523/eneuro.0209-19.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 11/25/2022] Open
Abstract
Intermittent exposure to a sensorimotor perturbation, such as a visuomotor rotation, is known to cause a directional bias on the subsequent movement that opposes the previously experienced perturbation. To date, it is unclear whether the parietal cortex is causally involved in this postperturbation movement bias. In a recent electroencephalogram study, Savoie et al. (2018) observed increased parietal activity in response to an intermittent visuomotor perturbation, raising the possibility that the parietal cortex could subserve this change in motor behavior. The goal of the present study was to causally test this hypothesis. Human participants (N = 28) reached toward one of two visual targets located on either side of a fixation point, while being pseudorandomly submitted to a visuomotor rotation. On half of all rotation trials, single-pulse transcranial magnetic stimulation (TMS) was applied over the right (N = 14) or left (N = 14) parietal cortex 150 ms after visual feedback provision. To determine whether TMS influenced the postperturbation bias, reach direction was compared on trials that followed rotation with (RS + 1) and without (R + 1) TMS. It was hypothesized that interfering with parietal activity would reduce the movement bias following rotated trials. Results revealed a significant and robust postrotation directional bias compared with both rotation and null rotation trials. Contrary to our hypothesis, however, neither left nor right parietal stimulation significantly impacted the postrotation bias. These data suggest that the parietal areas targeted here may not be critical for perturbation-induced motor output changes to emerge.
Collapse
|
5
|
Guillaume A, Fuller JR, Srimal R, Curtis CE. Cortico-cerebellar network involved in saccade adaptation. J Neurophysiol 2018; 120:2583-2594. [PMID: 30207858 PMCID: PMC6295533 DOI: 10.1152/jn.00392.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/07/2018] [Accepted: 09/08/2018] [Indexed: 01/10/2023] Open
Abstract
Saccade adaptation is the learning process that ensures that vision and saccades remain calibrated. The central nervous system network involved in these adaptive processes remains unclear because of difficulties in isolating the learning process from the correlated visual and motor processes. Here we imaged the human brain during a novel saccade adaptation paradigm that allowed us to isolate neural signals involved in learning independent of the changes in the amplitude of corrective saccades usually correlated with adaptation. We show that the changes in activation in the ipsiversive cerebellar vermis that track adaptation are not driven by the changes in corrective saccades and thus provide critical supporting evidence for previous findings. Similarly, we find that activation in the dorsomedial wall of the contraversive precuneus mirrors the pattern found in the cerebellum. Finally, we identify dorsolateral and dorsomedial cortical areas in the frontal and parietal lobes that encode the retinal errors following inaccurate saccades used to drive recalibration. Together, these data identify a distributed network of cerebellar and cortical areas and their specific roles in oculomotor learning. NEW & NOTEWORTHY The central nervous system constantly learns from errors and adapts to keep visual targets and saccades in registration. We imaged the human brain while the gain of saccades adapted to a visual target that was displaced while the eye was in motion, inducing retinal error. Activity in the cerebellum and precuneus tracked learning, whereas parts of the dorsolateral and dorsomedial frontal and parietal cortex encoded the retinal error used to drive learning.
Collapse
Affiliation(s)
- Alain Guillaume
- CNRS, Laboratoire de Neurosciences Cognitives, Aix Marseille Université , Marseille , France
- Department of Psychology, New York University , New York, New York
| | - Jason R Fuller
- Department of Psychology, New York University , New York, New York
| | - Riju Srimal
- Center for Neural Science, New York University , New York, New York
| | - Clayton E Curtis
- Department of Psychology, New York University , New York, New York
- Center for Neural Science, New York University , New York, New York
| |
Collapse
|
6
|
Interference between adaptation to double steps and adaptation to rotated feedback in spite of differences in directional selectivity. Exp Brain Res 2016; 234:1491-504. [PMID: 26821312 DOI: 10.1007/s00221-016-4559-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 01/11/2016] [Indexed: 10/22/2022]
Abstract
Two key features of sensorimotor adaptation are the directional selectivity of adaptive changes and the interference of adaptations to opposite directions. The present study investigated whether directional selectivity and interference of adaptation are related to executive functions and whether these phenomena differ between two methods for visuomotor adaptation. Subjects adapted at three target directions to clockwise or counterclockwise rotated feedback or to clockwise or counterclockwise target displacements (double steps). Both adaptation methods induce rotations of movement trajectories into the same direction, but provide visual information differently. The results showed that adaptation progressed differently between three targets. When movements adapted clockwise, adaptation was best at the most clockwise located target, and when movements adapted counterclockwise, it was best at the most counterclockwise located target, suggesting that spatial generalization between target directions is related to the direction of motor adaptation. The two adaptation methods produced different adaptation patterns, which indicate a further impact of visual information. A second adaptation to the other and opposite-directed discordance was worse than naive adaptation and washed out the aftereffects from the first adaptation, confirming that both adaptation methods interfered. Executive functions were significant covariate for overall interference and interference of target-specific adaptation. The results suggest that directional selectivity of adaptation is shaped by the direction of motor adaptation and the visual information provided. The interference of both adaptation methods indicates that they share adaptive mechanisms for recalibration. The interference is the lower the better subjects are able to cognitively switch between tasks and to inhibit prepotent responses. Therefore, cognitive functions seem to be involved in the inhibition of non-adequate sensorimotor responses.
Collapse
|
7
|
Bédard P, Sanes JN. Brain representations for acquiring and recalling visual-motor adaptations. Neuroimage 2014; 101:225-35. [PMID: 25019676 DOI: 10.1016/j.neuroimage.2014.07.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 06/23/2014] [Accepted: 07/05/2014] [Indexed: 11/17/2022] Open
Abstract
Humans readily learn and remember new motor skills, a process that likely underlies adaptation to changing environments. During adaptation, the brain develops new sensory-motor relationships, and if consolidation occurs, a memory of the adaptation can be retained for extended periods. Considerable evidence exists that multiple brain circuits participate in acquiring new sensory-motor memories, though the networks engaged in recalling these and whether the same brain circuits participate in their formation and recall have less clarity. To address these issues, we assessed brain activation with functional MRI while young healthy adults learned and recalled new sensory-motor skills by adapting to world-view rotations of visual feedback that guided hand movements. We found cerebellar activation related to adaptation rate, likely reflecting changes related to overall adjustments to the visual rotation. A set of parietal and frontal regions, including inferior and superior parietal lobules, premotor area, supplementary motor area and primary somatosensory cortex, exhibited non-linear learning-related activation that peaked in the middle of the adaptation phase. Activation in some of these areas, including the inferior parietal lobule, intra-parietal sulcus and somatosensory cortex, likely reflected actual learning, since the activation correlated with learning after-effects. Lastly, we identified several structures having recall-related activation, including the anterior cingulate and the posterior putamen, since the activation correlated with recall efficacy. These findings demonstrate dynamic aspects of brain activation patterns related to formation and recall of a sensory-motor skill, such that non-overlapping brain regions participate in distinctive behavioral events.
Collapse
Affiliation(s)
- Patrick Bédard
- Department of Neuroscience, Brown University, Providence, RI 02912 USA
| | - Jerome N Sanes
- Department of Neuroscience, Brown University, Providence, RI 02912 USA; Institute for Brain Science, Brown University, Providence, RI 02912 USA; Center for Neurorestoration and Neurotechnology, Providence Veterans Administration Medical Center, Providence, RI 02908 USA.
| |
Collapse
|
8
|
Borisova S, Bock O, Grigorova V. Concurrent directional adaptation of reactive saccades and hand movements to target displacements of different size. J Mot Behav 2014; 46:303-8. [PMID: 24857337 DOI: 10.1080/00222895.2014.909771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
When eye and hand movements are concurrently aimed at double-step targets that call for equal and opposite changes of response direction (-10° for the eyes, +10° for the hand), adaptive recalibration of both motor systems is strongly attenuated; instead, hand but not eye movements are changed by corrective strategies (V. Grigorova et al., 2013a). The authors introduce a complementary paradigm, where double-step targets call for a -10° change of eye and a -30° change for hand movements. If compared to control subjects adapting only the eyes or only the hand, adaptive improvements were comparable for the eyes but were twice as large for the hand; in contrast, eye and hand aftereffects were comparable to those in control subjects. The authors concluded that concurrent exposure of eyes and hand to steps of the same direction but different size facilitated hand strategies, but didn't affect recalibration. This finding together with previous one (V. Grigorova et al., 2013a), suggests that concurrent adaptation of eyes and hand reveals different mechanisms of recalibration for step sign and step size, which are shared by reactive saccades and hand movements. However, hand mostly benefits from strategies provoked by the difference in target step sign and size.
Collapse
Affiliation(s)
- Steliana Borisova
- a Institute of Neurobiology, Bulgarian Academy of Sciences , Sofia , Bulgaria
| | | | | |
Collapse
|
9
|
Bock O, Ilieva M, Grigorova V. Effects of old age and resource demand on double-step adaptation of saccadic eye movements. Exp Brain Res 2014; 232:2821-6. [PMID: 24792506 DOI: 10.1007/s00221-014-3969-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 04/17/2014] [Indexed: 10/25/2022]
Abstract
It is still unknown whether adaptation of saccades--like that of arm movements-deteriorates in the presence of a concurrent resource--demanding task, and whether it is affected by old age. We therefore compared double-step adaptation of saccade directions in young and older persons exposed to the adaptation task only (groups CY & CO), to the adaptation task and a spatially adjacent manual tracking task (AY & AO) or to the adaptation task and a spatially distant manual tracking task (DY & DO). Adaptation was similar in all groups except DO: the latter group showed no consistent adaptation and no adequate aftereffects. Tracking improved little by practice in all groups except AY, where the improvement was substantial. Our data therefore provide no evidence for an impact of old age and resource demand on saccadic adaptation, possibly because the neural substrate partly differs from that for arm adaptation. The lack of adaptation in DO probably reflects the well-known shrinkage of the functional field of view in old age.
Collapse
Affiliation(s)
- Otmar Bock
- Institute of Physiology, German Sport University, Cologne, Germany,
| | | | | |
Collapse
|
10
|
Neural correlates of adaptation to gradual and to sudden visuomotor distortions in humans. Exp Brain Res 2014; 232:1145-56. [PMID: 24449008 DOI: 10.1007/s00221-014-3824-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 01/05/2014] [Indexed: 11/27/2022]
Abstract
This study aimed at scrutinizing the neural correlates of sensorimotor adaptation. Subjects were exposed either to a gradually (group G) or to a suddenly introduced perturbation (group S) followed by a test of aftereffects. They were also exposed to a control condition equated for their movement errors during the adaptation condition. We registered subjects' brain activity by functional magnetic resonance imaging. Behavioral data revealed no difference between aftereffects in G and S, while imaging data suggest different neural correlates. Direct comparison between groups showed more adaptation-related activation in left cingulate and inferior frontal as well as right caudate and temporal areas in S than in G. In contrast, no neural activity was related more to G than to S and no common activations were found for both groups. Within-group analyses further revealed right inferior parietal lobe, cerebellar and cingulate cortex activity in group S and activation of frontal lobe and left cerebellum in group G for a contrast between adaptation condition and baseline. Less brain activity was observed when controlled for movement errors: the contrast between adaptation and control condition yielded left occipital lobe activity in group S, and left posterior dentate nucleus and brainstem activity in group G. The present data confirm an involvement of the cerebellar cortex in error processing during sudden adaptation, since this activation was found for the contrast 'adaptation-baseline' but not for 'adaptation-control.' In addition, our data suggest an involvement of deep cerebellar nuclei in the adaptation to gradually introduced distortions.
Collapse
|
11
|
Abstract
Behavioral studies have shown that humans can adapt to conflicting sensorimotor mappings that cause interference after intensive training. While previous research works indicate the involvement of distinct brain regions for different types of motor learning (e.g., kinematics vs dynamics), the neural mechanisms underlying joint adaptation to conflicting mappings within the same type of perturbation (e.g., different angles of visuomotor rotation) remain unclear. To reveal the neural substrates that represent multiple sensorimotor mappings, we examined whether different mappings could be classified with multivoxel activity patterns of functional magnetic resonance imaging data. Participants simultaneously adapted to opposite rotational perturbations (+90° and - 90°) during visuomotor tracking. To dissociate differences in movement kinematics with rotation types, we used two distinct patterns of target motion and tested generalization of the classifier between different combinations of rotation and motion types. Results showed that the rotation types were classified significantly above chance using activities in the primary sensorimotor cortex and the supplementary motor area, despite no significant difference in averaged signal amplitudes within the region. In contrast, low-level sensorimotor components, including tracking error and movement speed, were best classified using activities of the early visual cortex. Our results reveal that the sensorimotor cortex represents different visuomotor mappings, which permits joint learning and switching between conflicting sensorimotor skills.
Collapse
|
12
|
Grigorova V, Bock O, Borisova S. Concurrent adaptation of reactive saccades and hand pointing movements to equal and to opposite changes of target direction. Exp Brain Res 2013; 226:63-71. [PMID: 23371747 DOI: 10.1007/s00221-013-3411-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 01/07/2013] [Indexed: 11/24/2022]
Abstract
Eye as well as hand movements can adapt to double-step target displacements, but it is still controversial whether both motor systems use common or distinct adaptive mechanisms. Here, we posit that analyses of the concurrent adaptation of both motor systems to equal versus different double-steps may provide more conclusive evidence than previous work about the transfer of adaptation from one motor system to the other. Forty subjects adapted to double-steps which called for a change of response direction. The same (group S) or the opposite change (group O) was required for eyes and hand. Group ON equaled O, except that no visual feedback of the hand was provided. Groups E and H served as controls for eyes-only and hand-only adaptation, respectively. We found no differences between groups or motor systems when comparing S, E and H. Adaptation was faster in O than in S, E and H, and faster still in ON. However, the magnitude of eye adaptation was much smaller in O and ON than in S, E and H. We conclude that concurrent adaptation of eye and hand directions to opposite double-steps attenuates recalibration which, at least for the hand, is largely replaced by workaround strategies. The mechanisms for eye and hand adaptation therefore seem to be coupled, in a way that hinders divergent recalibration of both motor systems. The possible neuronal substrate for our findings is discussed.
Collapse
|
13
|
Schmitz G, Bock O, Grigorova V, Borisova S. Adaptation of hand movements to double-step targets and to distorted visual feedback: evidence for shared mechanisms. Hum Mov Sci 2011; 31:791-800. [PMID: 22154612 DOI: 10.1016/j.humov.2011.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 07/05/2011] [Accepted: 08/01/2011] [Indexed: 11/18/2022]
Abstract
Visuomotor adaptation of hand movements has been studied with two paradigms: double-step targets and distorted visual feedback. Here we investigate whether both procedures are based on a common adaptive mechanism. Subjects adapted either to double-step targets or to distorted feedback, each requiring a change of response angle by -15°. The magnitude of adaptation was larger with rotated feedback but magnitude of aftereffects was comparable, suggesting that the difference was due to strategic effects rather than visuomotor recalibration. Most importantly, subjects who adapted to double-step targets and were then exposed to rotated feedback performed as well as subjects who had fully adapted to rotated feedback, i.e., there was nearly 100% transfer from double-steps to rotations; likewise, the transfer from rotations to double-steps was almost 100%. From this we conclude that both types of adaptation share a common mechanism for recalibration.
Collapse
Affiliation(s)
- Gerd Schmitz
- Institute of Sport Science, Leibniz University Hannover, Am Moritzwinkel 6, 30167 Hannover, Germany.
| | | | | | | |
Collapse
|
14
|
Goto K, Hoshi Y, Sata M, Kawahara M, Takahashi M, Murohashi H. Role of the prefrontal cortex in the cognitive control of reaching movements: near-infrared spectroscopy study. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:127003. [PMID: 22191933 DOI: 10.1117/1.3658757] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
To elucidate the role of the prefrontal cortex in cognitive control of reaching movements, by multichannel near-infrared spectroscopy we examine changes in oxygenated hemoglobin (oxy-Hb) as an indicator of changes in regional cerebral blood flow in the bilateral dorsolateral (DLPFC), ventrolateral prefrontal cortex (VLPFC), and frontopolar cortex (FPC) during a reaching task with normal visual feedback (a consistent task) and a reaching task with flipped horizontal visual feedback (an inconsistent task). Subjects first perform 12 trials of the consistent task, and then perform six blocks of the inconsistent task, each of which consists of six trials. During the consistent task, oxy-Hb is increased only in the right VLPFC. During the first block of the inconsistent task, increases in oxy-Hb are observed in the bilateral DLPFC and the right VLPFC, whereas the increased oxy-Hb was gradually reduced as the block proceeded, which was accompanied by an improvement in the task performance. Eventually, there were no differences in the degree of change in oxy-Hb between the consistent and inconsistent tasks in the DLPFC and VLPFC. These findings suggest that the DLPFC is engaged in higher order cognitive control, while the right VLPFC is engaged in both higher and lower order cognitive controls.
Collapse
Affiliation(s)
- Kotaro Goto
- Hokkaido University, Graduate School of Education, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Shum M, Shiller DM, Baum SR, Gracco VL. Sensorimotor integration for speech motor learning involves the inferior parietal cortex. Eur J Neurosci 2011; 34:1817-22. [PMID: 22098364 DOI: 10.1111/j.1460-9568.2011.07889.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sensorimotor integration is important for motor learning. The inferior parietal lobe, through its connections with the frontal lobe and cerebellum, has been associated with multisensory integration and sensorimotor adaptation for motor behaviors other than speech. In the present study, the contribution of the inferior parietal cortex to speech motor learning was evaluated using repetitive transcranial magnetic stimulation (rTMS) prior to a speech motor adaptation task. Subjects' auditory feedback was altered in a manner consistent with the auditory consequences of an unintended change in tongue position during speech production, and adaptation performance was used to evaluate sensorimotor plasticity and short-term learning. Prior to the feedback alteration, rTMS or sham stimulation was applied over the left supramarginal gyrus (SMG). Subjects who underwent the sham stimulation exhibited a robust adaptive response to the feedback alteration whereas subjects who underwent rTMS exhibited a diminished adaptive response. The results suggest that the inferior parietal region, in and around SMG, plays a role in sensorimotor adaptation for speech. The interconnections of the inferior parietal cortex with inferior frontal cortex, cerebellum and primary sensory areas suggest that this region may be an important component in learning and adapting sensorimotor patterns for speech.
Collapse
Affiliation(s)
- Mamie Shum
- Neuroscience Major Program, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
16
|
Benn Y, Zheng Y, Wilkinson ID, Siegal M, Varley R. Language in calculation: a core mechanism? Neuropsychologia 2011; 50:1-10. [PMID: 22079204 DOI: 10.1016/j.neuropsychologia.2011.09.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 08/02/2011] [Accepted: 09/30/2011] [Indexed: 11/16/2022]
Abstract
Although there is evidence that exact calculation recruits left hemisphere perisylvian language systems, recent work has shown that exact calculation can be retained despite severe damage to these networks. In this study, we sought to identify a "core" network for calculation and hence to determine the extent to which left hemisphere language areas are part of this network. We examined performance on addition and subtraction problems in two modalities: one using conventional two-digit problems that can be easily encoded into language; the other using novel shape representations. With regard to numerical problems, our results revealed increased left fronto-temporal activity in addition, and increased parietal activity in subtraction, potentially reflecting retrieval of linguistically encoded information during addition. The shape problems elicited activations of occipital, parietal and dorsal temporal regions, reflecting visual reasoning processes. A core activation common to both calculation types involved the superior parietal lobule bilaterally, right temporal sub-gyral area, and left lateralized activations in inferior parietal (BA 40), frontal (BA 6/8/32) and occipital (BA 18) regions. The large bilateral parietal activation could be attributed to visuo-spatial processing in calculation. The inferior parietal region, and particularly the left angular gyrus, was part of the core calculation network. However, given its activation in both shape and number tasks, its role is unlikely to reflect linguistic processing per se. A possibility is that it serves to integrate right hemisphere visuo-spatial and left hemisphere linguistic and executive processing in calculation.
Collapse
Affiliation(s)
- Yael Benn
- Department of Psychology, University of Sheffield, UK.
| | | | | | | | | |
Collapse
|
17
|
Baugh LA, Lawrence JM, Marotta JJ. Novel claustrum activation observed during a visuomotor adaptation task using a viewing window paradigm. Behav Brain Res 2011; 223:395-402. [DOI: 10.1016/j.bbr.2011.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 03/25/2011] [Accepted: 05/11/2011] [Indexed: 11/28/2022]
|
18
|
Masia L, Casadio M, Sandini G, Morasso P. Eye-hand coordination during dynamic visuomotor rotations. PLoS One 2009; 4:e7004. [PMID: 19753120 PMCID: PMC2737429 DOI: 10.1371/journal.pone.0007004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 08/17/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND for many technology-driven visuomotor tasks such as tele-surgery, human operators face situations in which the frames of reference for vision and action are misaligned and need to be compensated in order to perform the tasks with the necessary precision. The cognitive mechanisms for the selection of appropriate frames of reference are still not fully understood. This study investigated the effect of changing visual and kinesthetic frames of reference during wrist pointing, simulating activities typical for tele-operations. METHODS using a robotic manipulandum, subjects had to perform center-out pointing movements to visual targets presented on a computer screen, by coordinating wrist flexion/extension with abduction/adduction. We compared movements in which the frames of reference were aligned (unperturbed condition) with movements performed under different combinations of visual/kinesthetic dynamic perturbations. The visual frame of reference was centered to the computer screen, while the kinesthetic frame was centered around the wrist joint. Both frames changed their orientation dynamically (angular velocity = 36 degrees /s) with respect to the head-centered frame of reference (the eyes). Perturbations were either unimodal (visual or kinesthetic), or bimodal (visual+kinesthetic). As expected, pointing performance was best in the unperturbed condition. The spatial pointing error dramatically worsened during both unimodal and most bimodal conditions. However, in the bimodal condition, in which both disturbances were in phase, adaptation was very fast and kinematic performance indicators approached the values of the unperturbed condition. CONCLUSIONS this result suggests that subjects learned to exploit an "affordance" made available by the invariant phase relation between the visual and kinesthetic frames. It seems that after detecting such invariance, subjects used the kinesthetic input as an informative signal rather than a disturbance, in order to compensate the visual rotation without going through the lengthy process of building an internal adaptation model. Practical implications are discussed as regards the design of advanced, high-performance man-machine interfaces.
Collapse
Affiliation(s)
- Lorenzo Masia
- Department of Robotics Brain and Cognitive Science, Italian Institute of Technology, Genoa, Italy.
| | | | | | | |
Collapse
|
19
|
Abstract
Prism adaptation does not only induce short-term sensorimotor plasticity, but also longer-term reorganization in the neural representation of space. We used event-related fMRI to study dynamic changes in brain activity during both early and prolonged exposure to visual prisms. Participants performed a pointing task before, during, and after prism exposure. Measures of trial-by-trial pointing errors and corrections allowed parametric analyses of brain activity as a function of performance. We show that during the earliest phase of prism exposure, anterior intraparietal sulcus was primarily implicated in error detection, whereas parieto-occipital sulcus was implicated in error correction. Cerebellum activity showed progressive increases during prism exposure, in accordance with a key role for spatial realignment. This time course further suggests that the cerebellum might promote neural changes in superior temporal cortex, which was selectively activated during the later phase of prism exposure and could mediate the effects of prism adaptation on cognitive spatial representations.
Collapse
|
20
|
Kagerer FA, Contreras-Vidal JL. Adaptation of sound localization induced by rotated visual feedback in reaching movements. Exp Brain Res 2008; 193:315-21. [PMID: 19048242 DOI: 10.1007/s00221-008-1630-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Accepted: 10/15/2008] [Indexed: 01/01/2023]
Abstract
A visuo-motor adaptation task was used to investigate the effects of this adaptation on the auditory-motor representation during reaching movements. We show that, following exposure to a rotated screen cursor-hand relationship, the movement paths during auditory conditions exhibited a similar pattern of aftereffects as those observed during movements to visual targets, indicating that the newly formed model of visuo-motor transformations for hand movement was available to the auditory-motor network for planning the hand movements. This plasticity in human sound localization does not require active cross-modal experience, and retention tests indicated that the newly formed internal model does not reside primarily within the central auditory system as suggested in past studies examining the plasticity of sound localization to distorted spatial vision.
Collapse
Affiliation(s)
- Florian A Kagerer
- Cognitive Motor Neuroscience Laboratory, Department of Kinesiology and Graduate Program in Neuroscience and Cognitive Science, University of Maryland School of Public Health, College Park, MD 20742, USA.
| | | |
Collapse
|
21
|
The effect of cerebellar cortical degeneration on adaptive plasticity and movement control. Exp Brain Res 2008; 193:189-96. [DOI: 10.1007/s00221-008-1607-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Accepted: 10/03/2008] [Indexed: 01/13/2023]
|