1
|
Li X, Gaillard F, Monckton EA, Glubrecht DD, Persad ARL, Moser M, Sauvé Y, Godbout R. Loss of AP-2delta reduces retinal ganglion cell numbers and axonal projections to the superior colliculus. Mol Brain 2016; 9:62. [PMID: 27259519 PMCID: PMC4893287 DOI: 10.1186/s13041-016-0244-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/29/2016] [Indexed: 11/10/2022] Open
Abstract
Background AP-2δ is the most divergent member of the Activating Protein-2 (TFAP2) family of transcription factors. AP-2δ is restricted to specific regions of the CNS, including a subset of ganglion cells in the retina. Retinal ganglion cells (RGCs), the only output neurons of the retina, are responsible for transmitting the visual signal to the brain. Results AP-2δ knockout results in loss of Brn3c (Pou4f3) expression in AP-2δ -positive RGCs. While AP-2δ-/- mice have morphologically normal retinas at birth, there is a significant reduction in retinal ganglion cell numbers by P21, after eye opening. Chromatin immunoprecipitation indicates that Brn3c is a target of AP-2δ in the retina. Using fluorochrome-conjugated cholera toxin subunit B to trace ganglion cell axons from the eye to the major visual pathways in the brain, we found 87 % and 32 % decreases in ipsilateral and contralateral projections, respectively, to the superior colliculus in AP-2δ-/- mice. In agreement with anatomical data, visually evoked responses recorded from the brain confirmed that retinal outputs to the brain are compromised. Conclusions AP-2δ is important for the maintenance of ganglion cell numbers in the retina. Loss of AP-2δ alters retinal axonal projections to visual centers of the brain, with ipsilaterial projections to the superior colliculus being the most dramatically affected. Our results have important implications for integration of the visual signal at the superior colliculus. Electronic supplementary material The online version of this article (doi:10.1186/s13041-016-0244-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaodong Li
- Department of Oncology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, AB, T6G 1Z2, Canada
| | - Frédéric Gaillard
- Department of Physiology, University of Alberta, 11560 University Avenue, Edmonton, AB, Canada.,Department of Ophthalmology, University of Alberta, 11560 University Avenue, Edmonton, AB, Canada
| | - Elizabeth A Monckton
- Department of Oncology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, AB, T6G 1Z2, Canada
| | - Darryl D Glubrecht
- Department of Oncology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, AB, T6G 1Z2, Canada
| | - Amit R L Persad
- Department of Oncology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, AB, T6G 1Z2, Canada
| | - Markus Moser
- Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Yves Sauvé
- Department of Physiology, University of Alberta, 11560 University Avenue, Edmonton, AB, Canada.,Department of Ophthalmology, University of Alberta, 11560 University Avenue, Edmonton, AB, Canada
| | - Roseline Godbout
- Department of Oncology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, AB, T6G 1Z2, Canada.
| |
Collapse
|
2
|
Assali A, Gaspar P, Rebsam A. Activity dependent mechanisms of visual map formation--from retinal waves to molecular regulators. Semin Cell Dev Biol 2014; 35:136-46. [PMID: 25152335 DOI: 10.1016/j.semcdb.2014.08.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/12/2014] [Accepted: 08/15/2014] [Indexed: 01/31/2023]
Abstract
The refinement of neural connections requires activity-dependent mechanisms in addition to the genetic program initially establishing wiring diagrams. The well-understood organization of the visual system makes it an accessible model for analyzing the contribution of activity in the formation of connectivity. Prior to visual experience, patterned spontaneous activity in the form of retinal waves has an important role for the establishment of eye-specific and retinotopic maps by acting on the refinement of axon arborization. In the present review, which focuses on experimental data obtained in mice and ferrets, we highlight the features of retinal activity that are important for visual map formation and question whether synaptic release and Hebbian based competition rules apply to this system. Recent evidence using genetic tools that allowed the manipulation of different features of neural activity have clarified the controversy on whether activity is instructive or permissive for visual map formation. Furthermore, current evidence strongly suggests that different mechanisms are at play for different types of axons (ipsilateral vs. contralateral), maps (eye-specific vs. retinotopic) or targets. Many molecules that either modulate activity or are modulated by activity are important in the formation of the visual map, such as adenylate cyclase 1, serotonin, or molecules from the immune system. Finally, new players in the game include retrograde messengers signaling from the target cell to the retinal axons as well as microglia that could help to eliminate inappropriate synapses.
Collapse
Affiliation(s)
- Ahlem Assali
- Inserm UMR-S839, Paris, 75005, France; Université Pierre & Marie Curie (UPMC), Sorbonne Universités, Paris, France; Institut du Fer à Moulin, Paris, 75005, France.
| | - Patricia Gaspar
- Inserm UMR-S839, Paris, 75005, France; Université Pierre & Marie Curie (UPMC), Sorbonne Universités, Paris, France; Institut du Fer à Moulin, Paris, 75005, France.
| | - Alexandra Rebsam
- Inserm UMR-S839, Paris, 75005, France; Université Pierre & Marie Curie (UPMC), Sorbonne Universités, Paris, France; Institut du Fer à Moulin, Paris, 75005, France.
| |
Collapse
|
3
|
Gaillard F, Karten HJ, Sauvé Y. Retinorecipient areas in the diurnal murine rodentArvicanthis niloticus: A disproportionally large superior colliculus. J Comp Neurol 2013; 521:1699-726. [DOI: 10.1002/cne.23303] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Revised: 07/01/2012] [Accepted: 01/04/2013] [Indexed: 12/24/2022]
|
4
|
Germanà A, Sánchez-Ramos C, Guerrera MC, Calavia MG, Navarro M, Zichichi R, García-Suárez O, Pérez-Piñera P, Vega JA. Expression and cell localization of brain-derived neurotrophic factor and TrkB during zebrafish retinal development. J Anat 2010; 217:214-22. [PMID: 20649707 DOI: 10.1111/j.1469-7580.2010.01268.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) signaling through TrkB regulates different aspects of neuronal development, including survival, axonal and dendritic growth, and synapse formation. Despite recent advances in our understanding of the functional significance of BDNF and TrkB in the retina, the cell types in the retina that express BDNF and TrkB, and the variations in their levels of expression during development, remain poorly defined. The goal of the present study is to determine the age-dependent changes in the levels of expression and localization of BDNF and TrkB in the zebrafish retina. Zebrafish retinas from 10 days post-fertilization (dpf) to 180 dpf were used to perform PCR, Western blot and immunohistochemistry. Both BDNF and TrkB mRNAs, and BDNF and full-length TrkB proteins were detected at all ages sampled. The localization of these proteins in the retina was very similar at all time points studied. BDNF immunoreactivity was found in the outer nuclear layer, the outer plexiform layer and the inner plexiform layer, whereas TrkB immunoreactivity was observed in the inner plexiform layer and, to a lesser extent, in the ganglion cell layer. These results demonstrate that the pattern of expression of BDNF and TrkB in the retina of zebrafish remains unchanged during postembryonic development and adult life. Because TrkB expression in retina did not change with age, cells expressing TrkB may potentially be able to respond during the entire lifespan of zebrafish to BDNF either exogenously administered or endogenously produced, acting through paracrine mechanisms.
Collapse
Affiliation(s)
- A Germanà
- Dipartmento di Morfologia, Biochimica, Fisiologia e Produzione Animale, Sezione di Morfologia, Università di Messina, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Cohen-Cory S, Kidane AH, Shirkey NJ, Marshak S. Brain-derived neurotrophic factor and the development of structural neuronal connectivity. Dev Neurobiol 2010; 70:271-88. [PMID: 20186709 DOI: 10.1002/dneu.20774] [Citation(s) in RCA: 292] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During development, neural networks are established in a highly organized manner, which persists throughout life. Neurotrophins play crucial roles in the developing nervous system. Among the neurotrophins, brain-derived neurotrophic factor (BDNF) is highly conserved in gene structure and function during vertebrate evolution, and serves an important role during brain development and in synaptic plasticity. BDNF participates in the formation of appropriate synaptic connections in the brain, and disruptions in this process contribute to disorders of cognitive function. In this review, we first briefly highlight current knowledge on the expression, regulation, and secretion of BDNF. Further, we provide an overview of the possible actions of BDNF in the development of neural circuits, with an emphasis on presynaptic actions of BDNF during the structural development of central neurons.
Collapse
Affiliation(s)
- Susana Cohen-Cory
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, California 92697, USA.
| | | | | | | |
Collapse
|