1
|
Napoli CD, Helfer KS, van Emmerik REA. Postural Complexity during Listening in Young and Middle-Aged Adults. ENTROPY (BASEL, SWITZERLAND) 2022; 24:762. [PMID: 35741483 PMCID: PMC9222853 DOI: 10.3390/e24060762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 12/10/2022]
Abstract
Postural behavior has traditionally been studied using linear assessments of stability (e.g., center of pressure ellipse area). While these assessments may provide valuable information, they neglect the nonlinear nature of the postural system and often lead to the conflation of variability with pathology. Moreover, assessing postural behavior in isolation or under otherwise unrealistic conditions may obscure the natural dynamics of the postural system. Alternatively, assessing postural complexity during ecologically valid tasks (e.g., conversing with others) may provide unique insight into the natural dynamics of the postural system across a wide array of temporal scales. Here, we assess postural complexity using Multiscale Sample Entropy in young and middle-aged adults during a listening task of varying degrees of difficulty. It was found that middle-aged adults exhibited greater postural complexity than did young adults, and that this age-related difference in postural complexity increased as a function of task difficulty. These results are inconsistent with the notion that aging is universally associated with a loss of complexity, and instead support the notion that age-related differences in complexity are task dependent.
Collapse
Affiliation(s)
- Charles Dane Napoli
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, MA 01003, USA;
| | - Karen S. Helfer
- Department of Communication Disorders, University of Massachusetts Amherst, Amherst, MA 01003, USA;
| | | |
Collapse
|
2
|
The Role of Predictability of Perturbation in Control of Posture: A Scoping Review. Motor Control 2021; 26:97-143. [PMID: 34891127 DOI: 10.1123/mc.2021-0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/28/2021] [Accepted: 10/19/2021] [Indexed: 11/18/2022]
Abstract
Efficient maintenance of posture depends on the ability of humans to predict consequences of a perturbation applied to their body. The purpose of this scoping review was to map the literature on the role of predictability of a body perturbation in control of posture. A comprehensive search of MEDLINE, EMBASE, and CINAHL databases was conducted. Inclusion criteria were studies of adults participating in experiments involving body perturbations, reported outcomes of posture and balance control, and studies published in English. Sixty-three studies were selected. The reviewed information resources included the availability of sensory information and the exposure to perturbations in different sequences of perturbation magnitudes or directions. This review revealed that people use explicit and implicit information resources for the prediction of perturbations. Explicit information consists of sensory information related to perturbation properties and timing, whereas implicit information involves learning from repetitive exposures to perturbations of the same properties.
Collapse
|
3
|
Tuning of Standing Postural Responses to Instability and Cost Function. Neuroscience 2020; 428:100-110. [PMID: 31917343 DOI: 10.1016/j.neuroscience.2019.12.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 11/20/2022]
Abstract
Whole-body movements are performed daily, and humans must constantly take into account the inherent instability of a standing posture. At times these movements may be performed in risky environments and when facing different costs of failure. The aim of the study was to test the hypothesis that in upright stance participants continuously estimate both probability of failure and cost of failure such that their postural responses will be based on these estimates. We designed a snowboard riding simulation experiment where participants were asked to control the position of a moving snowboard within a snow track in a risky environment. Cost functions were provided by modifying the penalty of riding in the area adjacent to the snow track. Uncertainty was modified by changing the gain of postural responses while participants were standing on a rocker board. We demonstrated that participants continually evaluated the environmental cost function and compensated for additional risk with feedback-based postural changes, even when probability of failure was negligible. Results showed also that the participants' estimates of the probability of failure accounted for their own inherent instability. Moreover, participants showed a tendency to overweight large probabilities of failure with more biomechanically constrained standing postures that results in suboptimal estimates of risky environments. Overall, our results suggest that participants tune their standing postural responses by empirically estimating the cost of failure and the uncertainty level in order to minimize the risk of falling when cost is high.
Collapse
|
4
|
Callahan DM, Umberger BR, Kent JA. Mechanisms of in vivo muscle fatigue in humans: investigating age-related fatigue resistance with a computational model. J Physiol 2016; 594:3407-21. [PMID: 26824934 DOI: 10.1113/jp271400] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 01/20/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Muscle fatigue can be defined as the transient decrease in maximal force that occurs in response to muscle use. Fatigue develops because of a complex set of changes within the neuromuscular system that are difficult to evaluate simultaneously in humans. The skeletal muscle of older adults fatigues less than that of young adults during static contractions. The potential sources of this difference are multiple and intertwined. To evaluate the individual mechanisms of fatigue, we developed an integrative computational model based on neural, biochemical, morphological and physiological properties of human skeletal muscle. Our results indicate first that the model provides accurate predictions of fatigue and second that the age-related resistance to fatigue is due largely to a lower reliance on glycolytic metabolism during contraction. This model should prove useful for generating hypotheses for future experimental studies into the mechanisms of muscle fatigue. ABSTRACT During repeated or sustained muscle activation, force-generating capacity becomes limited in a process referred to as fatigue. Multiple factors, including motor unit activation patterns, muscle fibre contractile properties and bioenergetic function, can impact force-generating capacity and thus the potential to resist fatigue. Given that neuromuscular fatigue depends on interrelated factors, quantifying their independent effects on force-generating capacity is not possible in vivo. Computational models can provide insight into complex systems in which multiple inputs determine discrete outputs. However, few computational models to date have investigated neuromuscular fatigue by incorporating the multiple levels of neuromuscular function known to impact human in vivo function. To address this limitation, we present a computational model that predicts neural activation, biomechanical forces, intracellular metabolic perturbations and, ultimately, fatigue during repeated isometric contractions. This model was compared with metabolic and contractile responses to repeated activation using values reported in the literature. Once validated in this way, the model was modified to reflect age-related changes in neuromuscular function. Comparisons between initial and age-modified simulations indicated that the age-modified model predicted less fatigue during repeated isometric contractions, consistent with reports in the literature. Together, our simulations suggest that reduced glycolytic flux is the greatest contributor to the phenomenon of age-related fatigue resistance. In contrast, oxidative resynthesis of phosphocreatine between intermittent contractions and inherent buffering capacity had minimal impact on predicted fatigue during isometric contractions. The insights gained from these simulations cannot be achieved through traditional in vivo or in vitro experimentation alone.
Collapse
Affiliation(s)
- Damien M Callahan
- Department of Kinesiology, University of Massachusetts, Amherst, MA, USA
| | - Brian R Umberger
- Department of Kinesiology, University of Massachusetts, Amherst, MA, USA
| | - Jane A Kent
- Department of Kinesiology, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
5
|
van Emmerik REA, Jones SL, Busa MA, Remelius JG, Averill JL. Enhancing postural stability and adaptability in multiple sclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 826:251-76. [PMID: 25330895 DOI: 10.1007/978-1-4939-1338-1_15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
6
|
Kilby MC, Slobounov SM, Newell KM. Postural instability detection: aging and the complexity of spatial-temporal distributional patterns for virtually contacting the stability boundary in human stance. PLoS One 2014; 9:e108905. [PMID: 25295589 PMCID: PMC4189796 DOI: 10.1371/journal.pone.0108905] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 08/28/2014] [Indexed: 11/25/2022] Open
Abstract
Falls among the older population can severely restrict their functional mobility and even cause death. Therefore, it is crucial to understand the mechanisms and conditions that cause falls, for which it is important to develop a predictive model of falls. One critical quantity for postural instability detection and prediction is the instantaneous stability of quiet upright stance based on motion data. However, well-established measures in the field of motor control that quantify overall postural stability using center-of-pressure (COP) or center-of-mass (COM) fluctuations are inadequate predictors of instantaneous stability. For this reason, 2D COP/COM virtual-time-to-contact (VTC) is investigated to detect the postural stability deficits of healthy older people compared to young adults. VTC predicts the temporal safety margin to the functional stability boundary ( = limits of the region of feasible COP or COM displacement) and, therefore, provides an index of the risk of losing postural stability. The spatial directions with increased instability were also determined using quantities of VTC that have not previously been considered. Further, Lempel-Ziv-Complexity (LZC), a measure suitable for on-line monitoring of stability/instability, was applied to explore the temporal structure or complexity of VTC and the predictability of future postural instability based on previous behavior. These features were examined as a function of age, vision and different load weighting on the legs. The primary findings showed that for old adults the stability boundary was contracted and VTC reduced. Furthermore, the complexity decreased with aging and the direction with highest postural instability also changed in aging compared to the young adults. The findings reveal the sensitivity of the time dependent properties of 2D VTC to the detection of postural instability in aging, availability of visual information and postural stance and potential applicability as a predictive model of postural instability during upright stance.
Collapse
Affiliation(s)
- Melissa C. Kilby
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Semyon M. Slobounov
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Sport Concussion Research and Services, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Karl M. Newell
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Center for Sport Concussion Research and Services, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
7
|
Aging and the recovery of postural stability from taking a step. Gait Posture 2014; 40:701-6. [PMID: 25161010 DOI: 10.1016/j.gaitpost.2014.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 07/14/2014] [Accepted: 08/04/2014] [Indexed: 02/02/2023]
Abstract
The study examined the effect of aging adults (young: 18-26 years vs. old: 66-73 years) on the recovery of postural stability from taking a single volitional step that varied in direction (forward, backward, sideways) onto force platforms. The recovery of postural stability (as indexed by an exponential decay function) was determined from the dynamic stability of the motions of the center of pressure (COP), center of mass (COM) and virtual time to contact (VTC). The findings showed that in all step directions the older adults required more time to securely perform the step and were less stable after the second foot contact with the surface of support. The decay rate of the recovery of the COP, COM and VTC stable dynamics was reduced and the minimum of VTC lower in the old in contrast to the young adults. The findings reveal that even in taking a single step with preferred spatial-temporal dynamics older adults are slower and less stable in recovery of stance through more closely challenging the limits of the postural stability boundary and its associated potential of a fall.
Collapse
|
8
|
Abstract
In this study, a comprehensive evaluation of static and dynamic balance abilities was performed in young and older adults and regression analysis was used to test whether age-related variations in individual ankle muscle mechanical properties could explain differences in balance performance. The mechanical properties included estimates of the maximal isometric force capability, force-length, force-velocity, and series elastic properties of the dorsiflexors and individual plantarflexor muscles (gastrocnemius and soleus). As expected, the older adults performed more poorly on most balance tasks. Muscular maximal isometric force, optimal fiber length, tendon slack length, and velocity-dependent force capabilities accounted for up to 60% of the age-related variation in performance on the static and dynamic balance tests. In general, the plantarflexors had a stronger predictive role than the dorsiflexors. Plantarflexor stiffness was strongly related to general balance performance, particularly in quiet stance; but this effect did not depend on age. Together, these results suggest that age-related differences in balance performance are explained in part by alterations in muscular mechanical properties.
Collapse
|
9
|
Remelius JG, Hamill J, van Emmerik REA. Prospective dynamic balance control during the swing phase of walking: stability boundaries and time-to-contact analysis. Hum Mov Sci 2014; 36:227-45. [PMID: 24856189 DOI: 10.1016/j.humov.2014.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 03/02/2014] [Accepted: 04/07/2014] [Indexed: 11/30/2022]
Abstract
This study examined the prospective control of the swing phase in young healthy adults while walking at preferred speed over unobstructed ground and during obstacle clearance. Three aspects of swing were examined: (1) the relation of the body Center of Mass (CoM) to the stability boundaries at the base of support; (2) a dynamic time-to-contact analysis of the CoM and swing foot to these boundaries; and (3) the role of head movements in the prospective control of gait and field of view assessment. The time-to-contact analysis of CoM and swing foot showed less stable swing dynamics in the trail foot compared to the lead foot in the approach to the unstable equilibrium, with the CoM leading the swing foot and crossing the anterior stability boundary before the swing foot. Compensations in temporal coupling occurred in the trail limb during the late swing phase. Time-to-contact analysis of head movement showed stronger prospective control of the lead foot, while fixation of the field of view occurred earlier in swing and was closer to the body in the obstacle condition compared to unobstructed walking. The dynamic time-to-contact analysis offers a new approach to assessing the unstable swing phase of walking in different populations.
Collapse
Affiliation(s)
- J G Remelius
- Department of Kinesiology, University of Massachusetts, Amherst, MA 01003, USA
| | - J Hamill
- Department of Kinesiology, University of Massachusetts, Amherst, MA 01003, USA
| | - R E A van Emmerik
- Department of Kinesiology, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
10
|
Rodrigues P, TenBroek T, Van Emmerik R, Hamill J. Evaluating runners with and without anterior knee pain using the time to contact the ankle joint complexes' range of motion boundary. Gait Posture 2014; 39:48-53. [PMID: 23810092 DOI: 10.1016/j.gaitpost.2013.05.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 04/30/2013] [Accepted: 05/29/2013] [Indexed: 02/02/2023]
Abstract
BACKGROUND Little biomechanical evidence exists to support the association between excessive foot pronation and anterior knee pain (AKP). One issue could be the way excessive pronation has been defined. Recent evidence has suggested that evaluating pronation in the context of the joint's available range of motion (ROM, anatomical threshold) provides greater insight on when pronation contributes to injury. Theoretically, quantifying the amount of time the joint has to respond before reaching end range (neuromuscular threshold) could provide additional insight. Therefore the purpose of this study was to use a neuromuscular threshold, the time to contact (TtC) the ankle joint complex's ROM boundary, to evaluate runners with and without AKP. METHODS Nineteen healthy and seventeen runners with AKP had their ROM and running biomechanics evaluated. The TtC was calculated using each individual's angular distance from end range (eversion buffer) and eversion velocity. Data were recorded over ten stance phases and evaluated using a one way analysis of variance and 95% confidence intervals. RESULTS Runners with AKP had significantly shorter TtC the joint's ROM boundary when compared to healthy runners (64.0 ms vs. 35.6 ms, p=0.01). While not statistically significant, this shorter TtC was in large part due to having a smaller eversion buffer, however velocity was found to have a substantial influence on the TtC of select individuals. These results provide evidence that a link between pronation and AKP exists when using anatomical and neuromuscular based thresholds.
Collapse
Affiliation(s)
- Pedro Rodrigues
- New Balance Sports Research Laboratory, Lawrence, MA, United States; Biomechanics Laboratory, University of Massachusetts, Amherst, MA, United States.
| | | | | | | |
Collapse
|
11
|
Musculoskeletal Considerations for the Senior Golfer. TOPICS IN GERIATRIC REHABILITATION 2013. [DOI: 10.1097/tgr.0b013e318295725f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Callahan DM, Umberger BR, Kent-Braun JA. A computational model of torque generation: neural, contractile, metabolic and musculoskeletal components. PLoS One 2013; 8:e56013. [PMID: 23405245 PMCID: PMC3566067 DOI: 10.1371/journal.pone.0056013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 01/04/2013] [Indexed: 11/19/2022] Open
Abstract
The pathway of voluntary joint torque production includes motor neuron recruitment and rate-coding, sarcolemmal depolarization and calcium release by the sarcoplasmic reticulum, force generation by motor proteins within skeletal muscle, and force transmission by tendon across the joint. The direct source of energetic support for this process is ATP hydrolysis. It is possible to examine portions of this physiologic pathway using various in vivo and in vitro techniques, but an integrated view of the multiple processes that ultimately impact joint torque remains elusive. To address this gap, we present a comprehensive computational model of the combined neuromuscular and musculoskeletal systems that includes novel components related to intracellular bioenergetics function. Components representing excitatory drive, muscle activation, force generation, metabolic perturbations, and torque production during voluntary human ankle dorsiflexion were constructed, using a combination of experimentally-derived data and literature values. Simulation results were validated by comparison with torque and metabolic data obtained in vivo. The model successfully predicted peak and submaximal voluntary and electrically-elicited torque output, and accurately simulated the metabolic perturbations associated with voluntary contractions. This novel, comprehensive model could be used to better understand impact of global effectors such as age and disease on various components of the neuromuscular system, and ultimately, voluntary torque output.
Collapse
Affiliation(s)
- Damien M Callahan
- Department of Kinesiology, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America.
| | | | | |
Collapse
|
13
|
A Systems Perspective on Postural and Gait Stability: Implications for Physical Activity in Aging and Disease. ACTA ACUST UNITED AC 2013. [DOI: 10.1123/krj.2.1.17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Postural instability, falls, and fear of falling that accompany frailty with aging and disease form major impediments to physical activity. In this article we present a theoretical framework that may help researchers and practitioners in the development and delivery of intervention programs aimed at reducing falls and improving postural stability and locomotion in older individuals and in those with disability due to disease. Based on a review of the dynamical and complex systems perspectives of movement coordination and control, we show that 1) central to developing a movement-based intervention program aimed at fall reduction and prevention is the notion that variability can play a functional role and facilitate movement adaptability, 2) intervention programs aimed at fall reduction should focus more on coordination and stability boundary measures instead of traditional gait and posture outcome variables, and 3) noise-based intervention techniques using stochastic resonance may offer external aids to improve dynamic balance control.
Collapse
|
14
|
Hasson CJ, Shen T, Sternad D. Energy margins in dynamic object manipulation. J Neurophysiol 2012; 108:1349-65. [PMID: 22592302 PMCID: PMC3544966 DOI: 10.1152/jn.00019.2012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 05/09/2012] [Indexed: 01/08/2023] Open
Abstract
Many tasks require humans to manipulate dynamically complex objects and maintain appropriate safety margins, such as placing a cup of coffee on a coaster without spilling. This study examined how humans learn such safety margins and how they are shaped by task constraints and changing variability with improved skill. Eighteen subjects used a manipulandum to transport a shallow virtual cup containing a ball to a target without losing the ball. Half were to complete the cup transit in a comfortable target time of 2 s (a redundant task with infinitely many equivalent solutions), and the other half in minimum time (a nonredundant task with one explicit cost to optimize). The safety margin was defined as the ball energy relative to escape, i.e., as an energy margin. The first hypothesis, that subjects converge to a single strategy in the minimum-time task but choose different strategies in the less constrained target-time task, was not supported. Both groups developed individualized strategies with practice. The second hypothesis, that subjects decrease safety margins in the minimum-time task but increase them in the target-time task, was supported. The third hypothesis, that in both tasks subjects modulate energy margins according to their execution variability, was partially supported. In the target-time group, changes in energy margins correlated positively with changes in execution variability; in the minimum-time group, such a relation was observed only at the end of practice, not across practice. These results show that when learning a redundant object manipulation task, most subjects increase their safety margins and shape their movement strategies in accordance with their changing variability.
Collapse
|
15
|
Sensorimotor and neuropsychological correlates of force perturbations that induce stepping in older adults. Gait Posture 2012; 36:356-60. [PMID: 22739050 DOI: 10.1016/j.gaitpost.2012.03.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 02/25/2012] [Accepted: 03/06/2012] [Indexed: 02/02/2023]
Abstract
Inappropriate stepping in response to unexpected balance perturbations is more prevalent in older people and in those at risk of falling. This study examined responses to force-controlled waist pulls in young and older people, and sought to identify physiological and cognitive correlates of the force threshold for stepping. 242 older (79.7±4.2 years) and 15 young (29.5±5.3 years) adults underwent waist pull perturbations and assessments of physiological and neuropsychological functioning, general health and falls efficacy. Perturbation force that induced stepping, stepping strategy and number of steps were measured. The older group withstood less forceful perturbations with a feet-in-place strategy, compared to young. Likewise, older adults with high falls risk withstood less force than those with low risk. After controlling for body weight and gender, sway and lower limb strength were independent predictors of anterior stepping thresholds, reaction time was an independent predictor of posterior thresholds, and executive functioning and lower limb strength were independent predictors of the lateral thresholds. These results suggest that balance, strength and agility training, in addition to cognitive exercises may enhance the ability to withstand unexpected balance perturbations and reduce the risk of falls in older people.
Collapse
|
16
|
Palmer CJ, Riccio GE, Van Emmerik REA. Orienting Under Load: Intrinsic Dynamics and Postural Affordances for Visual Perception. ECOLOGICAL PSYCHOLOGY 2012. [DOI: 10.1080/10407413.2012.673970] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
17
|
Manista GC, Ahmed AA. Stability limits modulate whole-body motor learning. J Neurophysiol 2012; 107:1952-61. [DOI: 10.1152/jn.00983.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our daily movements exert forces upon the environment and also upon our own bodies. To control for these forces, movements performed while standing are usually preceded by anticipatory postural adjustments (APAs). This strategy is effective at compensating for an expected perturbation, as it reduces the need to compensate for the perturbation in a reactive manner. However, it can also be risky if one anticipates the incorrect perturbation, which could result in movements outside stability limits and a loss of balance. Here, we examine whether the margin for error defined by these stability limits affects the amount of anticipation. Specifically, will one rely more on anticipation when the margin for error is lower? Will the degree of anticipation scale with the margin for error? We took advantage of the asymmetric stability limits (and margins for error) present in the sagittal plane during upright stance and investigated the effect of perturbation direction on the magnitude of APAs. We also compared anticipatory postural control with the anticipatory control observed at the arm. Standing subjects made reaching movements to multiple targets while grasping the handle of a robot arm. They experienced forward or backward perturbing forces depending on the target direction. Subjects learned to anticipate the forces and generated APAs. Although subjects had the biomechanical capacity to adapt similarly in the forward and backward directions, APAs were reduced significantly in the backward direction, which had smaller stability limits and a smaller margin for error. Interestingly, anticipatory control produced at the arm, where stability limits are not as relevant, was not affected by perturbation direction. These results suggest that stability limits modulate anticipatory control, and reduced stability limits lead to a reduction in anticipatory postural control.
Collapse
Affiliation(s)
- Gregory C. Manista
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| | - Alaa A. Ahmed
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado
| |
Collapse
|