1
|
Sagalajev B, Zhang T, Abdollahi N, Yousefpour N, Medlock L, Al-Basha D, Ribeiro-da-Silva A, Esteller R, Ratté S, Prescott SA. Absence of paresthesia during high-rate spinal cord stimulation reveals importance of synchrony for sensations evoked by electrical stimulation. Neuron 2024; 112:404-420.e6. [PMID: 37972595 DOI: 10.1016/j.neuron.2023.10.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/24/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023]
Abstract
Electrically activating mechanoreceptive afferents inhibits pain. However, paresthesia evoked by spinal cord stimulation (SCS) at 40-60 Hz becomes uncomfortable at high pulse amplitudes, limiting SCS "dosage." Kilohertz-frequency SCS produces analgesia without paresthesia and is thought, therefore, not to activate afferent axons. We show that paresthesia is absent not because axons do not spike but because they spike asynchronously. In a pain patient, selectively increasing SCS frequency abolished paresthesia and epidurally recorded evoked compound action potentials (ECAPs). Dependence of ECAP amplitude on SCS frequency was reproduced in pigs, rats, and computer simulations and is explained by overdrive desynchronization: spikes desychronize when axons are stimulated faster than their refractory period. Unlike synchronous spikes, asynchronous spikes fail to produce paresthesia because their transmission to somatosensory cortex is blocked by feedforward inhibition. Our results demonstrate how stimulation frequency impacts synchrony based on axon properties and how synchrony impacts sensation based on circuit properties.
Collapse
Affiliation(s)
- Boriss Sagalajev
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Tianhe Zhang
- Boston Scientific Neuromodulation, Valencia, CA 25155, USA
| | - Nooshin Abdollahi
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Noosha Yousefpour
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Laura Medlock
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Dhekra Al-Basha
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Alfredo Ribeiro-da-Silva
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada
| | | | - Stéphanie Ratté
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Steven A Prescott
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
2
|
Washington KM, Solari MG, Zanoun RR, Kwegyir-Afful EE, Su AJA, Carvell GE, Lee WPA, Simons DJ. Cortical reintegration after facial allotransplantation. J Neurophysiol 2023; 129:421-430. [PMID: 36542405 DOI: 10.1152/jn.00349.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Neural plasticity of the brain or its ability to reorganize following injury has likely coincided with the successful clinical correction of severe deformity by facial transplantation since 2005. In this study, we present the cortical reintegration outcomes following syngeneic hemifacial vascularized composite allograft (VCA) in a small animal model. Specifically, changes in the topographic organization and unit response properties of the rodent whisker-barrel somatosensory system were assessed following hemifacial VCA. Clear differences emerged in the barrel-cortex system when comparing naïve and hemiface transplanted animals. Neurons in the somatosensory cortex of transplanted rats had decreased sensitivity albeit increased directional sensitivity compared with naïve rats and evoked responses in transplanted animals were more temporally dispersed. In addition, receptive fields were often topographically mismatched with the indication that the mismatched topography reorganized within adjacent barrel (same row-arc bias following hemifacial transplant). These results suggest subcortical changes in the thalamus and/or brainstem play a role in hemifacial transplantation cortical plasticity and demonstrate the discrete and robust data that can be derived from this clinically relevant small animal VCA model for use in optimizing postsurgical outcomes.NEW & NOTEWORTHY Robust rodent hemifacial transplant model was used to record functional changes in somatosensory cortex after transplantation. Neurons in the somatosensory cortex of face transplant recipients had decreased sensitivity to stimulation of whiskers with increased directional sensitivity vs. naive rats. Transplant recipient cortical unit response was more dispersed in temporary vs. naive rats. Despite histological similarities to naive cortices, transplant recipient cortices had a mix of topographically appropriate and inappropriate whiskered at barrel cortex relationships.
Collapse
Affiliation(s)
- Kia M Washington
- Department of Plastic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Surgery, University of Colorado School of Medicine, CU Anschutz Medical Campus, Aurora, Colorado
| | - Mario G Solari
- Department of Plastic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Rami R Zanoun
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ernest E Kwegyir-Afful
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - An-Jey A Su
- Department of Plastic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Surgery, University of Colorado School of Medicine, CU Anschutz Medical Campus, Aurora, Colorado
| | - George E Carvell
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - W P Andrew Lee
- Department of Plastic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Department of Plastic Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Daniel J Simons
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
3
|
Mikhaylov A, Pimashkin A, Pigareva Y, Gerasimova S, Gryaznov E, Shchanikov S, Zuev A, Talanov M, Lavrov I, Demin V, Erokhin V, Lobov S, Mukhina I, Kazantsev V, Wu H, Spagnolo B. Neurohybrid Memristive CMOS-Integrated Systems for Biosensors and Neuroprosthetics. Front Neurosci 2020; 14:358. [PMID: 32410943 PMCID: PMC7199501 DOI: 10.3389/fnins.2020.00358] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/24/2020] [Indexed: 11/18/2022] Open
Abstract
Here we provide a perspective concept of neurohybrid memristive chip based on the combination of living neural networks cultivated in microfluidic/microelectrode system, metal-oxide memristive devices or arrays integrated with mixed-signal CMOS layer to control the analog memristive circuits, process the decoded information, and arrange a feedback stimulation of biological culture as parts of a bidirectional neurointerface. Our main focus is on the state-of-the-art approaches for cultivation and spatial ordering of the network of dissociated hippocampal neuron cells, fabrication of a large-scale cross-bar array of memristive devices tailored using device engineering, resistive state programming, or non-linear dynamics, as well as hardware implementation of spiking neural networks (SNNs) based on the arrays of memristive devices and integrated CMOS electronics. The concept represents an example of a brain-on-chip system belonging to a more general class of memristive neurohybrid systems for a new-generation robotics, artificial intelligence, and personalized medicine, discussed in the framework of the proposed roadmap for the next decade period.
Collapse
Affiliation(s)
- Alexey Mikhaylov
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Alexey Pimashkin
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Yana Pigareva
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | | | - Evgeny Gryaznov
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Sergey Shchanikov
- Department of Information Technologies, Vladimir State University, Murom, Russia
| | - Anton Zuev
- Department of Information Technologies, Vladimir State University, Murom, Russia
| | - Max Talanov
- Neuroscience Laboratory, Kazan Federal University, Kazan, Russia
| | - Igor Lavrov
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
- Laboratory of Motor Neurorehabilitation, Kazan Federal University, Kazan, Russia
| | | | - Victor Erokhin
- Neuroscience Laboratory, Kazan Federal University, Kazan, Russia
- Kurchatov Institute, Moscow, Russia
- CNR-Institute of Materials for Electronics and Magnetism, Italian National Research Council, Parma, Italy
| | - Sergey Lobov
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Center for Technologies in Robotics and Mechatronics Components, Innopolis University, Innopolis, Russia
| | - Irina Mukhina
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Cell Technology Group, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Victor Kazantsev
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Center for Technologies in Robotics and Mechatronics Components, Innopolis University, Innopolis, Russia
| | - Huaqiang Wu
- Institute of Microelectronics, Tsinghua University, Beijing, China
| | - Bernardo Spagnolo
- Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Dipartimento di Fisica e Chimica-Emilio Segrè, Group of Interdisciplinary Theoretical Physics, Università di Palermo and CNISM, Unità di Palermo, Palermo, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Catania, Catania, Italy
| |
Collapse
|
4
|
Casas-Torremocha D, Clascá F, Núñez Á. Posterior Thalamic Nucleus Modulation of Tactile Stimuli Processing in Rat Motor and Primary Somatosensory Cortices. Front Neural Circuits 2017; 11:69. [PMID: 29021744 PMCID: PMC5623691 DOI: 10.3389/fncir.2017.00069] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/12/2017] [Indexed: 12/18/2022] Open
Abstract
Rodents move rhythmically their facial whiskers and compute differences between signals predicted and those resulting from the movement to infer information about objects near their head. These computations are carried out by a large network of forebrain structures that includes the thalamus and the primary somatosensory (S1BF) and motor (M1wk) cortices. Spatially and temporally precise mechanorreceptive whisker information reaches the S1BF cortex via the ventroposterior medial thalamic nucleus (VPM). Other whisker-related information may reach both M1wk and S1BF via the axons from the posterior thalamic nucleus (Po). However, Po axons may convey, in addition to direct sensory signals, the dynamic output of computations between whisker signals and descending motor commands. It has been proposed that this input may be relevant for adjusting cortical responses to predicted vs. unpredicted whisker signals, but the effects of Po input on M1wk and S1BF function have not been directly tested or compared in vivo. Here, using electrophysiology, optogenetics and pharmacological tools, we compared in adult rats M1wk and S1BF in vivo responses in the whisker areas of the motor and primary somatosensory cortices to passive multi-whisker deflection, their dependence on Po activity, and their changes after a brief intense activation of Po axons. We report that the latencies of the first component of tactile-evoked local field potentials in M1wk and S1BF are similar. The evoked potentials decrease markedly in M1wk, but not in S1BF, by injection in Po of the GABAA agonist muscimol. A brief high-frequency electrical stimulation of Po decreases the responsivity of M1wk and S1BF cells to subsequent whisker stimulation. This effect is prevented by the local application of omega-agatoxin, suggesting that it may in part depend on GABA release by fast-spiking parvalbumin (PV)-expressing cortical interneurons. Local optogenetic activation of Po synapses in different cortical layers also diminishes M1wk and S1BF responses. This effect is most pronounced in the superficial layers of both areas, known to be the main source and target of their reciprocal cortico-cortical connections.
Collapse
Affiliation(s)
- Diana Casas-Torremocha
- Department of Anatomy, Histology and Neuroscience, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Francisco Clascá
- Department of Anatomy, Histology and Neuroscience, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Ángel Núñez
- Department of Anatomy, Histology and Neuroscience, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| |
Collapse
|
5
|
Yang Q, Chen CC, Ramos RL, Katz E, Keller A, Brumberg JC. Intrinsic properties of and thalamocortical inputs onto identified corticothalamic-VPM neurons. Somatosens Mot Res 2014; 31:78-93. [PMID: 24397568 DOI: 10.3109/08990220.2013.869495] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Corticothalamic (CT) feedback plays an important role in regulating the sensory information that the cortex receives. Within the somatosensory cortex layer VI originates the feedback to the ventral posterior medial (VPM) nucleus of the thalamus, which in turn receives sensory information from the contralateral whiskers. We examined the physiology and morphology of CT neurons in rat somatosensory cortex, focusing on the physiological characteristics of the monosynaptic inputs that they receive from the thalamus. To identify CT neurons, rhodamine microspheres were injected into VPM and allowed to retrogradely transport to the soma of CT neurons. Thalamocortical slices were prepared at least 3 days post injection. Whole-cell recordings from labeled CT cells in layer VI demonstrated that they are regular spiking neurons and exhibit little spike frequency adaption. Two anatomical classes were identified based on their apical dendrites that either terminated by layer V (compact cells) or layer IV (elaborate cells). Thalamic inputs onto identified CT-VPM neurons demonstrated paired pulse depression over a wide frequency range (2-20 Hz). Stimulus trains also resulted in significant synaptic depression above 10 Hz. Our results suggest that thalamic inputs differentially impact CT-VPM neurons in layer VI. This characteristic may allow them to differentiate a wide range of stimulation frequencies which in turn further tune the feedback signals to the thalamus.
Collapse
Affiliation(s)
- Qizong Yang
- Department of Psychology, Queens College , CUNY, Flushing, NY , USA
| | | | | | | | | | | |
Collapse
|
6
|
Rosenbaum R, Zimnik A, Zheng F, Turner RS, Alzheimer C, Doiron B, Rubin JE. Axonal and synaptic failure suppress the transfer of firing rate oscillations, synchrony and information during high frequency deep brain stimulation. Neurobiol Dis 2013; 62:86-99. [PMID: 24051279 DOI: 10.1016/j.nbd.2013.09.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 08/01/2013] [Accepted: 09/06/2013] [Indexed: 11/18/2022] Open
Abstract
High frequency deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a widely used treatment for Parkinson's disease, but its effects on neural activity in basal ganglia circuits are not fully understood. DBS increases the excitation of STN efferents yet decouples STN spiking patterns from the spiking patterns of STN synaptic targets. We propose that this apparent paradox is resolved by recent studies showing an increased rate of axonal and synaptic failures in STN projections during DBS. To investigate this hypothesis, we combine in vitro and in vivo recordings to derive a computational model of axonal and synaptic failure during DBS. Our model shows that these failures induce a short term depression that suppresses the synaptic transfer of firing rate oscillations, synchrony and rate-coded information from STN to its synaptic targets. In particular, our computational model reproduces the widely reported suppression of parkinsonian β oscillations and synchrony during DBS. Our results support the idea that short term depression is a therapeutic mechanism of STN DBS that works as a functional lesion by decoupling the somatic spiking patterns of STN neurons from spiking activity in basal ganglia output nuclei.
Collapse
Affiliation(s)
- Robert Rosenbaum
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA, USA.
| | - Andrew Zimnik
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Fang Zheng
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Robert S Turner
- Center for the Neural Basis of Cognition, Pittsburgh, PA, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Christian Alzheimer
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Brent Doiron
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Jonathan E Rubin
- Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, Pittsburgh, PA, USA
| |
Collapse
|
7
|
Thalamic activation modulates the responses of neurons in rat primary auditory cortex: an in vivo intracellular recording study. PLoS One 2012; 7:e34837. [PMID: 22514672 PMCID: PMC3325946 DOI: 10.1371/journal.pone.0034837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Accepted: 03/06/2012] [Indexed: 11/28/2022] Open
Abstract
Auditory cortical plasticity can be induced through various approaches. The medial geniculate body (MGB) of the auditory thalamus gates the ascending auditory inputs to the cortex. The thalamocortical system has been proposed to play a critical role in the responses of the auditory cortex (AC). In the present study, we investigated the cellular mechanism of the cortical activity, adopting an in vivo intracellular recording technique, recording from the primary auditory cortex (AI) while presenting an acoustic stimulus to the rat and electrically stimulating its MGB. We found that low-frequency stimuli enhanced the amplitudes of sound-evoked excitatory postsynaptic potentials (EPSPs) in AI neurons, whereas high-frequency stimuli depressed these auditory responses. The degree of this modulation depended on the intensities of the train stimuli as well as the intervals between the electrical stimulations and their paired sound stimulations. These findings may have implications regarding the basic mechanisms of MGB activation of auditory cortical plasticity and cortical signal processing.
Collapse
|
8
|
Hamani C, Stone SS, Garten A, Lozano AM, Winocur G. Memory rescue and enhanced neurogenesis following electrical stimulation of the anterior thalamus in rats treated with corticosterone. Exp Neurol 2011; 232:100-4. [PMID: 21906593 DOI: 10.1016/j.expneurol.2011.08.023] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 08/16/2011] [Accepted: 08/22/2011] [Indexed: 10/17/2022]
Abstract
Deep brain stimulation has been investigated as a treatment for memory disturbance but its mechanisms remain elusive. We show that anterior thalamic nucleus (ATN) stimulation administered to corticosterone-treated rats one month prior to testing improved performance on a delayed non-matching to sample task and increased hippocampal neurogenesis. In contrast, no behavioral changes were observed in animals that were tested a few days after surgery. Results of this study suggests that the behavioral effects of ATN stimulation in corticosterone-treated animals was likely dependent on long-term plastic changes, including the development of newly borne dentate gyrus cells of sufficient functional maturity.
Collapse
Affiliation(s)
- Clement Hamani
- Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, Canada.
| | | | | | | | | |
Collapse
|