1
|
Design and Analysis of a Lower Limb Rehabilitation Training Component for Bedridden Stroke Patients. MACHINES 2021. [DOI: 10.3390/machines9100224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Carrying out the immediate rehabilitation interventional therapy will better improve the curative effect of rehabilitation therapy, after the condition of bedridden stroke patients becomes stable. A new lower limb rehabilitation training module, as a component of a synchronous rehabilitation robot for bedridden stroke patients’ upper and lower limbs, is proposed. It can electrically adjust the body shape of patients with a different weight and height. Firstly, the innovative mechanism design of the lower limb rehabilitation training module is studied. Then, the mechanism of the lower limb rehabilitation module is simplified and the geometric relationship of the human–machine linkage mechanism is deduced. Next, the trajectory planning and dynamic modeling of the human–machine linkage mechanism are carried out. Based on the analysis of the static moment safety protection of the human–machine linkage model, the motor driving force required in the rehabilitation process is calculated to achieve the purpose of rationalizing the rehabilitation movement of the patient’s lower limb. To reconstruct the patient’s motor functions, an active training control strategy based on the sandy soil model is proposed. Finally, the experimental platform of the proposed robot is constructed, and the preliminary physical experiment proves the feasibility of the lower limb rehabilitation component.
Collapse
|
2
|
Modulation of spinal cord excitability following remote limb ischemic preconditioning in healthy young men. Exp Brain Res 2020; 238:1265-1276. [PMID: 32303809 DOI: 10.1007/s00221-020-05807-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/08/2020] [Indexed: 12/20/2022]
Abstract
Remote limb ischemic preconditioning (RIPC) has shown to improve dynamic postural control in humans. However, studies on the underlying adaptations of spinal cord networks have never been performed. The present work addresses this issue by investigating parameters from the soleus H-reflex recruitment curve (RC), presynaptic mechanisms of reflex modulation (presynaptic inhibition-PSI, and post activation depression-PAD), and the excursion of the center of pressure (CP) recorded during 1 min in upright stance over a compliant surface. A sham ischemic protocol (partial obstruction of blood flow) was applied to the contralateral thigh along four consecutive days. The same procedure was repeated with full obstruction (RIPC) three days after ending the sham protocol. Data were collected before and after both sham and RIPC protocols. The follow-up data were collected five days after the last ischemic intervention. Significant reduction was detected for both the fast oscillations of the CP (higher frequency components) and the parameter estimated from the RC corresponding to the high amplitude H-reflexes (p < 0.05). Even though the magnitude of effects was similar, it was washed out within three days after sham, but persisted for at least five days after RIPC. No significant differences were found for PSI and PAD levels across conditions. These findings indicate that RIPC leads to enduring changes in spinal cord excitability for the latest reflexively recruited motoneurons, along with improvement in balance control. However, these adaptations were not mediated by the presynaptic mechanisms currently assessed.
Collapse
|
3
|
Therapeutic Elastic Tapes Applied in Different Directions Over the Triceps Surae Do Not Modulate Reflex Excitability of the Soleus Muscle. J Sport Rehabil 2020; 30:22-29. [PMID: 32087597 DOI: 10.1123/jsr.2018-0435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 11/06/2019] [Accepted: 01/02/2020] [Indexed: 11/18/2022]
Abstract
CONTEXT Elastic taping has been widely used for either to facilitate or to inhibit muscle contraction. The efficacy of elastic taping is allegedly ascribed to physiological mechanisms related to subcutaneous tissue and muscle stimulation as a result of tape tension and direction. However, the underlying mechanisms that support the use of elastic taping are still unclear. OBJECTIVE To investigate changes in electrophysiological responses after 48 hours of tape application in different directions on the calf muscles of healthy individuals. DESIGN Within-subjects design. SETTING Research laboratory. PARTICIPANTS Twenty-seven physically active males (age 18.0 [4.2] y, height 1.65 [0.07] m, body mass 62.3 [10.3] kg) participated. INTERVENTIONS Soleus H-reflex responses were evoked through stimulation of the tibial posterior nerve with 2- to 4-second interval between stimuli (32 sweeps) for each condition (baseline: without tape; facilitation: tape applied from muscle origin to insertion; inhibition: tape applied from muscle insertion to origin). MAIN OUTCOME MEASURES The H-reflex amplitude values were normalized by the maximal direct response (Mmax). Parameters were estimated from a sigmoidal fit of the H-reflex recruitment curve (ascending limb). RESULTS No significant differences were found for the parameters derived from the recruitment curve of the H-reflex among the conditions (P > .05). CONCLUSIONS The authors' findings showed that, irrespective of the direction of tape application, the elastic tape applied over the triceps surae does not generate any significant alteration on the excitability of the reflex pathway for different subpopulations of motor units. The authors therefore suggest a re-examination of the current recommendations on taping direction in clinical and sports activities.
Collapse
|
4
|
Exploiting cervicolumbar connections enhances short-term spinal cord plasticity induced by rhythmic movement. Exp Brain Res 2019; 237:2319-2329. [PMID: 31286172 DOI: 10.1007/s00221-019-05598-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/04/2019] [Indexed: 01/08/2023]
Abstract
Arm cycling causes suppression of soleus (SOL) Hoffmann (H-) reflex that outlasts the activity period. Arm cycling presumably activates propriospinal networks that modulate Ia presynaptic inhibition. Interlimb pathways are thought to relate to the control of quadrupedal locomotion, allowing for smooth, coordinated movement of the arms and legs. We examined whether the number of active limb pairs affects the amount and duration of activity-dependent plasticity of the SOL H-reflex. On separate days, 14 participants completed 4 randomly ordered 30 min experimental sessions: (1) quiet sitting (CTRL); (2) arm cycling (ARM); (3) leg cycling (LEG); and (4) arm and leg cycling (A&L) on an ergometer. SOL H-reflex and M-wave were evoked via electrical stimulation of the tibial nerve. M-wave and H-reflex recruitment curves were recorded, while the participants sat quietly prior to, 10 and 20 min into, immediately after, and at 2.5, 5, 7.5, 10, 15, 20, 25, and 30 min after each experimental session. Normalized maximal H-reflexes were unchanged in CTRL, but were suppressed by > 30% during the ARM, LEG, and A&L. H-reflex suppression outlasted activity duration for ARM (≤ 2.5 mins), LEG (≤ 5 mins), and A&L (≤ 30 mins). The duration of reflex suppression after A&L was greater than the algebraic summation of ARM and LEG. This non-linear summation suggests that using the arms and legs simultaneously-as in typical locomotor synergies-amplifies networks responsible for the short-term plasticity of lumbar spinal cord excitability. Enhanced activity of spinal networks may have important implications for the implementation of locomotor training for targeted rehabilitation.
Collapse
|
5
|
Klarner T, Zehr EP. Sherlock Holmes and the curious case of the human locomotor central pattern generator. J Neurophysiol 2018. [PMID: 29537920 DOI: 10.1152/jn.00554.2017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Evidence first described in reduced animal models over 100 years ago led to deductions about the control of locomotion through spinal locomotor central pattern-generating (CPG) networks. These discoveries in nature were contemporaneous with another form of deductive reasoning found in popular culture, that of Arthur Conan Doyle's detective, Sherlock Holmes. Because the invasive methods used in reduced nonhuman animal preparations are not amenable to study in humans, we are left instead with deducing from other measures and observations. Using the deductive reasoning approach of Sherlock Holmes as a metaphor for framing research into human CPGs, we speculate and weigh the evidence that should be observable in humans based on knowledge from other species. This review summarizes indirect inference to assess "observable evidence" of pattern-generating activity that leads to the logical deduction of CPG contributions to arm and leg activity during locomotion in humans. The question of where a CPG may be housed in the human nervous system remains incompletely resolved at this time. Ongoing understanding, elaboration, and application of functioning locomotor CPGs in humans is important for gait rehabilitation strategies in those with neurological injuries.
Collapse
Affiliation(s)
- Taryn Klarner
- Rehabilitation Neuroscience Laboratory, University of Victoria , Victoria, British Columbia , Canada.,Human Discovery Science, International Collaboration on Repair Discoveries , Vancouver, British Columbia , Canada.,Centre for Biomedical Research, University of Victoria , Victoria, British Columbia , Canada
| | - E Paul Zehr
- Rehabilitation Neuroscience Laboratory, University of Victoria , Victoria, British Columbia , Canada.,Human Discovery Science, International Collaboration on Repair Discoveries , Vancouver, British Columbia , Canada.,Centre for Biomedical Research, University of Victoria , Victoria, British Columbia , Canada.,Division of Medical Sciences, University of Victoria, British Columbia, Canada
| |
Collapse
|
6
|
Kaupp C, Pearcey GEP, Klarner T, Sun Y, Cullen H, Barss TS, Zehr EP. Rhythmic arm cycling training improves walking and neurophysiological integrity in chronic stroke: the arms can give legs a helping hand in rehabilitation. J Neurophysiol 2017; 119:1095-1112. [PMID: 29212917 DOI: 10.1152/jn.00570.2017] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Training locomotor central pattern-generating networks (CPGs) through arm and leg cycling improves walking in chronic stroke. These outcomes are presumed to result from enhanced interlimb connectivity and CPG function. The extent to which rhythmic arm training activates interlimb CPG networks for locomotion remains unclear and was assessed by studying chronic stroke participants before and after 5 wk of arm cycling training. Strength was assessed bilaterally via maximal voluntary isometric contractions in the legs and hands. Muscle activation during arm cycling and transfer to treadmill walking were assessed in the more affected (MA) and less affected (LA) sides via surface electromyography. Changes to interlimb coupling during rhythmic movement were evaluated using modulation of cutaneous reflexes elicited by electrical stimulation of the superficial radial nerve at the wrist. Bilateral soleus stretch reflexes were elicited at rest and during 1-Hz arm cycling. Clinical function tests assessed walking, balance, and motor function. Results show significant changes in function and neurophysiological integrity. Training increased bilateral grip strength, force during MA plantarflexion, and muscle activation. "Normalization" of cutaneous reflex modulation was found during arm cycling. There was enhanced activity in the dorsiflexor muscles on the MA side during the swing phase of walking. Enhanced interlimb coupling was shown by increased modulation of MA soleus stretch reflex amplitudes during arm cycling after training. Clinical evaluations showed enhanced walking ability and balance. These results are consistent with training-induced changes in CPG function and interlimb connectivity and underscore the need for arm training in the functional rehabilitation of walking after neurotrauma. NEW & NOTEWORTHY It has been suggested but not tested that training the arms may influence rehabilitation of walking due to activation of interneuronal patterning networks after stroke. We show that arm cycling training improves strength, clinical function, coordination of muscle activity during walking, and neurological connectivity between the arms and the legs. The arms can, in fact, give the legs a helping hand in rehabilitation of walking after stroke.
Collapse
Affiliation(s)
- Chelsea Kaupp
- Rehabilitation Neuroscience Laboratory, University of Victoria , Victoria, British Columbia , Canada.,Human Discovery Science, International Collaboration on Repair Discoveries (ICORD) , Vancouver, British Columbia , Canada.,Centre for Biomedical Research, University of Victoria , Victoria, British Columbia , Canada
| | - Gregory E P Pearcey
- Rehabilitation Neuroscience Laboratory, University of Victoria , Victoria, British Columbia , Canada.,Human Discovery Science, International Collaboration on Repair Discoveries (ICORD) , Vancouver, British Columbia , Canada.,Centre for Biomedical Research, University of Victoria , Victoria, British Columbia , Canada
| | - Taryn Klarner
- Rehabilitation Neuroscience Laboratory, University of Victoria , Victoria, British Columbia , Canada.,Human Discovery Science, International Collaboration on Repair Discoveries (ICORD) , Vancouver, British Columbia , Canada.,Centre for Biomedical Research, University of Victoria , Victoria, British Columbia , Canada
| | - Yao Sun
- Rehabilitation Neuroscience Laboratory, University of Victoria , Victoria, British Columbia , Canada.,Human Discovery Science, International Collaboration on Repair Discoveries (ICORD) , Vancouver, British Columbia , Canada.,Centre for Biomedical Research, University of Victoria , Victoria, British Columbia , Canada
| | - Hilary Cullen
- Rehabilitation Neuroscience Laboratory, University of Victoria , Victoria, British Columbia , Canada.,Human Discovery Science, International Collaboration on Repair Discoveries (ICORD) , Vancouver, British Columbia , Canada.,Centre for Biomedical Research, University of Victoria , Victoria, British Columbia , Canada
| | - Trevor S Barss
- Human Neurophysiology Laboratory, University of Alberta , Edmonton, Alberta , Canada
| | - E Paul Zehr
- Rehabilitation Neuroscience Laboratory, University of Victoria , Victoria, British Columbia , Canada.,Human Discovery Science, International Collaboration on Repair Discoveries (ICORD) , Vancouver, British Columbia , Canada.,Centre for Biomedical Research, University of Victoria , Victoria, British Columbia , Canada.,Division of Medical Sciences, University of Victoria , Victoria, British Columbia , Canada
| |
Collapse
|
7
|
Mezzarane RA, Nakajima T, Zehr EP. Bilateral Reflex Fluctuations during Rhythmic Movement of Remote Limb Pairs. Front Hum Neurosci 2017; 11:355. [PMID: 28725191 PMCID: PMC5496955 DOI: 10.3389/fnhum.2017.00355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 06/21/2017] [Indexed: 01/05/2023] Open
Abstract
The modulation of spinal cord excitability during rhythmic limb movement reflects the neuronal coordination underlying actions of the arms and legs. Integration of network activity in the spinal cord can be assessed by reflex variability between the limbs, an approach so far very little studied. The present work addresses this question by eliciting Hoffmann (H-) reflexes in both limbs to assess if common drive onto bilateral pools of motoneurons influence spinal cord excitability simultaneously or with a delay between sides. A cross-covariance (CCV) sequence between reflexes in both arms or legs was evaluated under conditions providing common drive bilaterally through voluntary muscle contraction and/or rhythmic movement of the remote limbs. For H-reflexes in the flexor carpi radialis (FCR) muscle, either contraction of the FCR or leg cycling induced significant reduction in the amplitude of the peak at the zero lag in the CCV sequence, indicating independent variations in spinal excitability between both sides. In contrast, for H-reflexes in the soleus (SO) muscle, arm cycling revealed no reduction in the amplitude of the peak in the CCV sequence at the zero lag. This suggests a more independent control of the arms compared with the legs. These results provide new insights into the organization of human limb control in rhythmic activity and the behavior of bilateral reflex fluctuations under different motor tasks. From a functional standpoint, changes in the co-variability might reflect dynamic adjustments in reflex excitability that are subsumed under more global control features during locomotion.
Collapse
Affiliation(s)
- Rinaldo A Mezzarane
- Laboratory of Signal Processing and Motor Control, College of Physical Education, University of BrasíliaBrasília, Brazil.,Rehabilitation Neuroscience Laboratory, School of Exercise Science, Physical, and Health Education, University of VictoriaVictoria, BC, Canada
| | - Tsuyoshi Nakajima
- Rehabilitation Neuroscience Laboratory, School of Exercise Science, Physical, and Health Education, University of VictoriaVictoria, BC, Canada.,Department of Integrative Physiology, Kyorin University School of MedicineTokyo, Japan
| | - E Paul Zehr
- Rehabilitation Neuroscience Laboratory, School of Exercise Science, Physical, and Health Education, University of VictoriaVictoria, BC, Canada.,Human Discovery Science, International Collaboration on Repair Discoveries (ICORD)Vancouver, BC, Canada.,Centre for Biomedical Research, University of VictoriaVictoria, BC, Canada.,Division of Medical Sciences, University of VictoriaVictoria, BC, Canada
| |
Collapse
|
8
|
Klarner T, Barss TS, Sun Y, Kaupp C, Loadman PM, Zehr EP. Long-Term Plasticity in Reflex Excitability Induced by Five Weeks of Arm and Leg Cycling Training after Stroke. Brain Sci 2016; 6:brainsci6040054. [PMID: 27827888 PMCID: PMC5187568 DOI: 10.3390/brainsci6040054] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/22/2016] [Accepted: 10/28/2016] [Indexed: 12/21/2022] Open
Abstract
Neural connections remain partially viable after stroke, and access to these residual connections provides a substrate for training-induced plasticity. The objective of this project was to test if reflex excitability could be modified with arm and leg (A & L) cycling training. Nineteen individuals with chronic stroke (more than six months postlesion) performed 30 min of A & L cycling training three times a week for five weeks. Changes in reflex excitability were inferred from modulation of cutaneous and stretch reflexes. A multiple baseline (three pretests) within-subject control design was used. Plasticity in reflex excitability was determined as an increase in the conditioning effect of arm cycling on soleus stretch reflex amplitude on the more affected side, by the index of modulation, and by the modulation ratio between sides for cutaneous reflexes. In general, A & L cycling training induces plasticity and modifies reflex excitability after stroke.
Collapse
Affiliation(s)
- Taryn Klarner
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC V8W 3P1, Canada.
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC V5Z 1M9, Canada.
- Centre for Biomedical Research, University of Victoria, Victoria, BC V8W 2Y2, Canada.
| | - Trevor S Barss
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC V8W 3P1, Canada.
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC V5Z 1M9, Canada.
- Centre for Biomedical Research, University of Victoria, Victoria, BC V8W 2Y2, Canada.
| | - Yao Sun
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC V8W 3P1, Canada.
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC V5Z 1M9, Canada.
- Centre for Biomedical Research, University of Victoria, Victoria, BC V8W 2Y2, Canada.
| | - Chelsea Kaupp
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC V8W 3P1, Canada.
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC V5Z 1M9, Canada.
- Centre for Biomedical Research, University of Victoria, Victoria, BC V8W 2Y2, Canada.
| | - Pamela M Loadman
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC V8W 3P1, Canada.
| | - E Paul Zehr
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC V8W 3P1, Canada.
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC V5Z 1M9, Canada.
- Centre for Biomedical Research, University of Victoria, Victoria, BC V8W 2Y2, Canada.
- Division of Medical Sciences, University of Victoria, BC V8P 5C2, Canada.
| |
Collapse
|
9
|
Zehr EP, Barss TS, Dragert K, Frigon A, Vasudevan EV, Haridas C, Hundza S, Kaupp C, Klarner T, Klimstra M, Komiyama T, Loadman PM, Mezzarane RA, Nakajima T, Pearcey GEP, Sun Y. Neuromechanical interactions between the limbs during human locomotion: an evolutionary perspective with translation to rehabilitation. Exp Brain Res 2016; 234:3059-3081. [PMID: 27421291 PMCID: PMC5071371 DOI: 10.1007/s00221-016-4715-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 06/27/2016] [Indexed: 11/10/2022]
Abstract
During bipedal locomotor activities, humans use elements of quadrupedal neuronal limb control. Evolutionary constraints can help inform the historical ancestry for preservation of these core control elements support transfer of the huge body of quadrupedal non-human animal literature to human rehabilitation. In particular, this has translational applications for neurological rehabilitation after neurotrauma where interlimb coordination is lost or compromised. The present state of the field supports including arm activity in addition to leg activity as a component of gait retraining after neurotrauma.
Collapse
Affiliation(s)
- E P Zehr
- Rehabilitation Neuroscience Laboratory, University of Victoria, PO Box 3010 STN CSC, Victoria, BC, Canada, V8W 3P1.
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada.
- Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada.
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
| | - Trevor S Barss
- Rehabilitation Neuroscience Laboratory, University of Victoria, PO Box 3010 STN CSC, Victoria, BC, Canada, V8W 3P1
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
- Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
| | - Katie Dragert
- Rehabilitation Neuroscience Laboratory, University of Victoria, PO Box 3010 STN CSC, Victoria, BC, Canada, V8W 3P1
| | - Alain Frigon
- Department of Pharmacology-physiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Erin V Vasudevan
- Department of Physical Therapy, SUNY Stony Brook University, Stony Brook, NY, USA
| | - Carlos Haridas
- Rehabilitation Neuroscience Laboratory, University of Victoria, PO Box 3010 STN CSC, Victoria, BC, Canada, V8W 3P1
| | - Sandra Hundza
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
- Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
- Motion and Mobility Rehabilitation Laboratory, University of Victoria, Victoria, BC, Canada
| | - Chelsea Kaupp
- Rehabilitation Neuroscience Laboratory, University of Victoria, PO Box 3010 STN CSC, Victoria, BC, Canada, V8W 3P1
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
- Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
| | - Taryn Klarner
- Rehabilitation Neuroscience Laboratory, University of Victoria, PO Box 3010 STN CSC, Victoria, BC, Canada, V8W 3P1
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
- Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
| | - Marc Klimstra
- Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
- Motion and Mobility Rehabilitation Laboratory, University of Victoria, Victoria, BC, Canada
| | - Tomoyoshi Komiyama
- Division of Sports and Health Science, Chiba University, Chiba, Japan
- The United Graduate School of Education, Tokyo Gakugei University, Tokyo, Japan
| | - Pamela M Loadman
- Rehabilitation Neuroscience Laboratory, University of Victoria, PO Box 3010 STN CSC, Victoria, BC, Canada, V8W 3P1
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
- Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
| | - Rinaldo A Mezzarane
- Laboratory of Signal Processing and Motor Control, College of Physical Education, Universidade de Brasília-UnB, Brasília, Brazil
| | - Tsuyoshi Nakajima
- Department of Integrative Physiology, Kyorin University School of Medicine, Tokyo, Japan
| | - Gregory E P Pearcey
- Rehabilitation Neuroscience Laboratory, University of Victoria, PO Box 3010 STN CSC, Victoria, BC, Canada, V8W 3P1
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
- Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
| | - Yao Sun
- Rehabilitation Neuroscience Laboratory, University of Victoria, PO Box 3010 STN CSC, Victoria, BC, Canada, V8W 3P1
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
- Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
10
|
Exploiting Interlimb Arm and Leg Connections for Walking Rehabilitation: A Training Intervention in Stroke. Neural Plast 2016; 2016:1517968. [PMID: 27403344 PMCID: PMC4926010 DOI: 10.1155/2016/1517968] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/20/2016] [Accepted: 05/10/2016] [Indexed: 01/13/2023] Open
Abstract
Rhythmic arm and leg (A&L) movements share common elements of neural control. The extent to which A&L cycling training can lead to training adaptations which transfer to improved walking function remains untested. The purpose of this study was to test the efficacy of A&L cycling training as a modality to improve locomotor function after stroke. Nineteen chronic stroke (>six months) participants were recruited and performed 30 minutes of A&L cycling training three times a week for five weeks. Changes in walking function were assessed with (1) clinical tests; (2) strength during isometric contractions; and (3) treadmill walking performance and cutaneous reflex modulation. A multiple baseline (3 pretests) within-subject control design was used. Data show that A&L cycling training improved clinical walking status increased strength by ~25%, improved modulation of muscle activity by ~25%, increased range of motion by ~20%, decreased stride duration, increased frequency, and improved modulation of cutaneous reflexes during treadmill walking. On most variables, the majority of participants showed a significant improvement in walking ability. These results suggest that exploiting arm and leg connections with A&L cycling training, an accessible and cost-effective training modality, could be used to improve walking ability after stroke.
Collapse
|
11
|
Suzuki S, Nakajima T, Futatsubashi G, Mezzarane RA, Ohtsuka H, Ohki Y, Zehr EP, Komiyama T. Soleus Hoffmann reflex amplitudes are specifically modulated by cutaneous inputs from the arms and opposite leg during walking but not standing. Exp Brain Res 2016; 234:2293-304. [PMID: 27030502 DOI: 10.1007/s00221-016-4635-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/18/2016] [Indexed: 11/24/2022]
Abstract
Electrical stimulation of cutaneous nerves innervating heteronymous limbs (the arms or contralateral leg) modifies the excitability of soleus Hoffmann (H-) reflexes. The differences in the sensitivities of the H-reflex pathway to cutaneous afferents from different limbs and their modulation during the performance of motor tasks (i.e., standing and walking) are not fully understood. In the present study, we investigated changes in soleus H-reflex amplitudes induced by electrical stimulation of peripheral nerves. Selected targets for conditioning stimulation included the superficial peroneal nerve, which innervates the foot dorsum in the contralateral ankle (cSP), and the superficial radial nerve, which innervates the dorsum of the hand in the ipsilateral (iSR) or contralateral wrist (cSR). Stimulation and subsequent reflex assessment took place during the standing and early-stance phase of treadmill walking in ten healthy subjects. Cutaneous stimulation produced long-latency inhibition (conditioning-test interval of ~100 ms) of the H-reflex during the early-stance phase of walking, and the inhibition was stronger following cSP stimulation compared with iSR or cSR stimulation. In contrast, although similar conditioning stimulation significantly facilitated the H-reflex during standing, this effect remained constant irrespective of the different conditioning sites. These findings suggest that cutaneous inputs from the arms and contralateral leg had reversible effects on the H-reflex amplitudes, including inhibitions with different sensitivities during the early-stance phase of walking and facilitation during standing. Furthermore, the differential sensitivities of the H-reflex modulations were expressed only during walking when the locations of the afferent inputs were functionally relevant.
Collapse
Affiliation(s)
- Shinya Suzuki
- Division of Health and Sports Education, The United Graduate School of Education, Tokyo Gakugei University, Tokyo, Japan. .,Department of Integrative Physiology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan.
| | - Tsuyoshi Nakajima
- Department of Integrative Physiology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - Genki Futatsubashi
- Division of Health and Sports Education, The United Graduate School of Education, Tokyo Gakugei University, Tokyo, Japan.,Faculty of Business and Information Sciences, Jobu University, Isesaki, Gunma, Japan
| | - Rinaldo A Mezzarane
- Laboratory of Signal Processing and Motor Control, College of Physical Education, University of Brasília, Brasília, Brazil.,Biomedical Engineering Laboratory, EPUSP, PTC, University of São Paulo, São Paulo, Brazil.,Division of Health and Sports Sciences, Faculty of Education, Chiba University, Chiba, Japan
| | - Hiroyuki Ohtsuka
- Department of Physical Therapy, School of Rehabilitation Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Yukari Ohki
- Department of Integrative Physiology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| | - E Paul Zehr
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC, Canada.,Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada.,International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
| | - Tomoyoshi Komiyama
- Division of Health and Sports Education, The United Graduate School of Education, Tokyo Gakugei University, Tokyo, Japan.,Division of Health and Sports Sciences, Faculty of Education, Chiba University, Chiba, Japan
| |
Collapse
|
12
|
Sasada S, Tazoe T, Nakajima T, Futatsubashi G, Ohtsuka H, Suzuki S, Zehr EP, Komiyama T. A common neural element receiving rhythmic arm and leg activity as assessed by reflex modulation in arm muscles. J Neurophysiol 2016; 115:2065-75. [PMID: 26961103 DOI: 10.1152/jn.00638.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 02/02/2016] [Indexed: 01/15/2023] Open
Abstract
Neural interactions between regulatory systems for rhythmic arm and leg movements are an intriguing issue in locomotor neuroscience. Amplitudes of early latency cutaneous reflexes (ELCRs) in stationary arm muscles are modulated during rhythmic leg or arm cycling but not during limb positioning or voluntary contraction. This suggests that interneurons mediating ELCRs to arm muscles integrate outputs from neural systems controlling rhythmic limb movements. Alternatively, outputs could be integrated at the motoneuron and/or supraspinal levels. We examined whether a separate effect on the ELCR pathways and cortico-motoneuronal excitability during arm and leg cycling is integrated by neural elements common to the lumbo-sacral and cervical spinal cord. The subjects performed bilateral leg cycling (LEG), contralateral arm cycling (ARM), and simultaneous contralateral arm and bilateral leg cycling (A&L), while ELCRs in the wrist flexor and shoulder flexor muscles were evoked by superficial radial (SR) nerve stimulation. ELCR amplitudes were facilitated by cycling tasks and were larger during A&L than during ARM and LEG. A low stimulus intensity during ARM or LEG generated a larger ELCR during A&L than the sum of ELCRs during ARM and LEG. We confirmed this nonlinear increase in single motor unit firing probability following SR nerve stimulation during A&L. Furthermore, motor-evoked potentials following transcranial magnetic and electrical stimulation did not show nonlinear potentiation during A&L. These findings suggest the existence of a common neural element of the ELCR reflex pathway that is active only during rhythmic arm and leg movement and receives convergent input from contralateral arms and legs.
Collapse
Affiliation(s)
- Syusaku Sasada
- Division of Health and Sport Education, The United Graduate School of Education, Tokyo Gakugei University, Tokyo, Japan; Department of Food and Nutrition Science, Sagami Women's University, Kanagawa, Japan;
| | - Toshiki Tazoe
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, Florida
| | - Tsuyoshi Nakajima
- Department of Integrative Physiology, Kyorin University School of Medicine, Tokyo, Japan
| | - Genki Futatsubashi
- Division of Health and Sport Education, The United Graduate School of Education, Tokyo Gakugei University, Tokyo, Japan; Department of Management and Information Sciences, Jobu University, Gunma, Japan
| | - Hiroyuki Ohtsuka
- School of Rehabilitation Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Shinya Suzuki
- Division of Health and Sport Education, The United Graduate School of Education, Tokyo Gakugei University, Tokyo, Japan; Department of Integrative Physiology, Kyorin University School of Medicine, Tokyo, Japan
| | - E Paul Zehr
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, British Columbia, Canada; and
| | - Tomoyoshi Komiyama
- Division of Health and Sport Education, The United Graduate School of Education, Tokyo Gakugei University, Tokyo, Japan; Department of Health and Sports Sciences, Faculty of Education, Chiba University, Chiba, Japan
| |
Collapse
|
13
|
Solopova IA, Selionov VA, Zhvansky DS, Gurfinkel VS, Ivanenko Y. Human cervical spinal cord circuitry activated by tonic input can generate rhythmic arm movements. J Neurophysiol 2015; 115:1018-30. [PMID: 26683072 DOI: 10.1152/jn.00897.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/16/2015] [Indexed: 01/03/2023] Open
Abstract
The coordination between arms and legs during human locomotion shares many features with that in quadrupeds, yet there is limited evidence for the central pattern generator for the upper limbs in humans. Here we investigated whether different types of tonic stimulation, previously used for eliciting stepping-like leg movements, may evoke nonvoluntary rhythmic arm movements. Twenty healthy subjects participated in this study. The subject was lying on the side, the trunk was fixed, and all four limbs were suspended in a gravity neutral position, allowing unrestricted low-friction limb movements in the horizontal plane. The results showed that peripheral sensory stimulation (continuous muscle vibration) and central tonic activation (postcontraction state of neuronal networks following a long-lasting isometric voluntary effort, Kohnstamm phenomenon) could evoke nonvoluntary rhythmic arm movements in most subjects. In ∼40% of subjects, tonic stimulation elicited nonvoluntary rhythmic arm movements together with rhythmic movements of suspended legs. The fact that not all participants exhibited nonvoluntary limb oscillations may reflect interindividual differences in responsiveness of spinal pattern generation circuitry to its activation. The occurrence and the characteristics of induced movements highlight the rhythmogenesis capacity of cervical neuronal circuitries, complementing the growing body of work on the quadrupedal nature of human gait.
Collapse
Affiliation(s)
- I A Solopova
- Laboratory of Neurobiology of Motor Control, Institute for Information Transmission Problems, Moscow, Russia;
| | - V A Selionov
- Laboratory of Neurobiology of Motor Control, Institute for Information Transmission Problems, Moscow, Russia
| | - D S Zhvansky
- Laboratory of Neurobiology of Motor Control, Institute for Information Transmission Problems, Moscow, Russia
| | - V S Gurfinkel
- Biomedical Engineering Department, Oregon Health and Science University, Portland, Oregon; and
| | - Y Ivanenko
- Laboratory of Neuromotor Physiology, Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
14
|
Mezzarane RA, Magalhães FH, Chaud VM, Elias LA, Kohn AF. Enhanced D1 and D2 inhibitions induced by low-frequency trains of conditioning stimuli: differential effects on H- and T-reflexes and possible mechanisms. PLoS One 2015; 10:e0121496. [PMID: 25807195 PMCID: PMC4373906 DOI: 10.1371/journal.pone.0121496] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 02/01/2015] [Indexed: 11/26/2022] Open
Abstract
Mechanically evoked reflexes have been postulated to be less sensitive to presynaptic inhibition (PSI) than the H-reflex. This has implications on investigations of spinal cord neurophysiology that are based on the T-reflex. Preceding studies have shown an enhanced effect of PSI on the H-reflex when a train of ~10 conditioning stimuli at 1 Hz was applied to the nerve of the antagonist muscle. The main questions to be addressed in the present study are if indeed T-reflexes are less sensitive to PSI and whether (and to what extent and by what possible mechanisms) the effect of low frequency conditioning, found previously for the H-reflex, can be reproduced on T-reflexes from the soleus muscle. We explored two different conditioning-to-test (C-T) intervals: 15 and 100 ms (corresponding to D1 and D2 inhibitions, respectively). Test stimuli consisted of either electrical pulses applied to the posterior tibial nerve to elicit H-reflexes or mechanical percussion to the Achilles tendon to elicit T-reflexes. The 1 Hz train of conditioning electrical stimuli delivered to the common peroneal nerve induced a stronger effect of PSI as compared to a single conditioning pulse, for both reflexes (T and H), regardless of C-T-intervals. Moreover, the conditioning train of pulses (with respect to a single conditioning pulse) was proportionally more effective for T-reflexes as compared to H-reflexes (irrespective of the C-T interval), which might be associated with the differential contingent of Ia afferents activated by mechanical and electrical test stimuli. A conceivable explanation for the enhanced PSI effect in response to a train of stimuli is the occurrence of homosynaptic depression at synapses on inhibitory interneurons interposed within the PSI pathway. The present results add to the discussion of the sensitivity of the stretch reflex pathway to PSI and its functional role.
Collapse
Affiliation(s)
- Rinaldo André Mezzarane
- Laboratory of Signal Processing and Motor Control, College of Physical Education, Universidade de Brasília—UnB, Brasília, Brazil
- Biomedical Engineering Laboratory, Escola Politécnica, PTC, Universidade de São Paulo, São Paulo, Brazil
- * E-mail:
| | - Fernando Henrique Magalhães
- Biomedical Engineering Laboratory, Escola Politécnica, PTC, Universidade de São Paulo, São Paulo, Brazil
- School of Arts, Sciences and Humanities—EACH, Universidade de São Paulo, São Paulo, Brazil
| | - Vitor Martins Chaud
- Biomedical Engineering Laboratory, Escola Politécnica, PTC, Universidade de São Paulo, São Paulo, Brazil
- Department of Electrical Engineering, Universidade Federal do Triângulo Mineiro—UFTM, Uberaba, Brazil
| | - Leonardo Abdala Elias
- Biomedical Engineering Laboratory, Escola Politécnica, PTC, Universidade de São Paulo, São Paulo, Brazil
- Department of Biomedical Engineering, School of Electrical and Computer Engineering, University of Campinas—UNICAMP, Campinas, Brazil
| | - André Fabio Kohn
- Biomedical Engineering Laboratory, Escola Politécnica, PTC, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
Solopova IA, Selionov VA, Sylos-Labini F, Gurfinkel VS, Lacquaniti F, Ivanenko YP. Tapping into rhythm generation circuitry in humans during simulated weightlessness conditions. Front Syst Neurosci 2015; 9:14. [PMID: 25741250 PMCID: PMC4332337 DOI: 10.3389/fnsys.2015.00014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/27/2015] [Indexed: 12/25/2022] Open
Abstract
An ability to produce rhythmic activity is ubiquitous for locomotor pattern generation and modulation. The role that the rhythmogenesis capacity of the spinal cord plays in injured populations has become an area of interest and systematic investigation among researchers in recent years, despite its importance being long recognized by neurophysiologists and clinicians. Given that each individual interneuron, as a rule, receives a broad convergence of various supraspinal and sensory inputs and may contribute to a vast repertoire of motor actions, the importance of assessing the functional state of the spinal locomotor circuits becomes increasingly evident. Air-stepping can be used as a unique and important model for investigating human rhythmogenesis since its manifestation is largely facilitated by a reduction of external resistance. This article aims to provide a review on current issues related to the “locomotor” state and interactions between spinal and supraspinal influences on the central pattern generator (CPG) circuitry in humans, which may be important for developing gait rehabilitation strategies in individuals with spinal cord and brain injuries.
Collapse
Affiliation(s)
- Irina A Solopova
- Laboratory of Neurobiology of Motor Control, Institute for Information Transmission Problems, Russian Academy of Science Moscow, Russia
| | - Victor A Selionov
- Laboratory of Neurobiology of Motor Control, Institute for Information Transmission Problems, Russian Academy of Science Moscow, Russia
| | - Francesca Sylos-Labini
- Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia Rome, Italy ; Centre of Space Bio-medicine, University of Rome Tor Vergata Rome, Italy
| | - Victor S Gurfinkel
- Biomedical Engineering Department, Oregon Health and Science University Portland, OR, USA
| | - Francesco Lacquaniti
- Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia Rome, Italy ; Centre of Space Bio-medicine, University of Rome Tor Vergata Rome, Italy ; Department of Systems Medicine, University of Rome Tor Vergata Rome, Italy
| | - Yuri P Ivanenko
- Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia Rome, Italy
| |
Collapse
|
16
|
Nakajima T, Mezzarane RA, Komiyama T, Paul Zehr E. Reflex control of human locomotion: Existence, features and functions of common interneuronal system induced by multiple sensory inputs in humans. ACTA ACUST UNITED AC 2015. [DOI: 10.7600/jpfsm.4.197] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Tsuyoshi Nakajima
- Department of Integrative Physiology, Kyorin University School of Medicine
| | - Rinaldo A. Mezzarane
- Laboratory of Signal Processing and Motor Control, College of Physical Education, University of Brasília
| | | | - E. Paul Zehr
- Division of Medical Sciences, University of Victoria
- Centre for Biomedical Research, University of Victoria
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD)
- Rehabilitation Neuroscience Laboratory, University of Victoria
| |
Collapse
|
17
|
Nakajima T, Mezzarane RA, Hundza SR, Komiyama T, Zehr EP. Convergence in reflex pathways from multiple cutaneous nerves innervating the foot depends upon the number of rhythmically active limbs during locomotion. PLoS One 2014; 9:e104910. [PMID: 25170606 PMCID: PMC4149341 DOI: 10.1371/journal.pone.0104910] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 07/16/2014] [Indexed: 11/19/2022] Open
Abstract
Neural output from the locomotor system for each arm and leg influences the spinal motoneuronal pools directly and indirectly through interneuronal (IN) reflex networks. While well documented in other species, less is known about the functions and features of convergence in common IN reflex system from cutaneous afferents innervating different foot regions during remote arm and leg movement in humans. The purpose of the present study was to use spatial facilitation to examine possible convergence in common reflex pathways during rhythmic locomotor limb movements. Cutaneous reflexes were evoked in ipsilateral tibialis anterior muscle by stimulating (in random order) the sural nerve (SUR), the distal tibial nerve (TIB), and combined simultaneous stimulation of both nerves (TIB&SUR). Reflexes were evoked while participants performed rhythmic stepping and arm swinging movement with both arms and the leg contralateral to stimulation (ARM&LEG), with just arm movement (ARM) and with just contralateral leg movement (LEG). Stimulation intensities were just below threshold for evoking early latency (<80 ms to peak) reflexes. For each stimulus condition, rectified EMG signals were averaged while participants held static contractions in the stationary (stimulated) leg. During ARM&LEG movement, amplitudes of cutaneous reflexes evoked by combined TIB&SUR stimulation were significantly larger than simple mathematical summation of the amplitudes evoked by SUR or TIB alone. Interestingly, this extra facilitation seen during combined nerve stimulation was significantly reduced when performing ARM or LEG compared to ARM&LEG. We conclude that locomotor rhythmic limb movement induces excitation of common IN reflex pathways from cutaneous afferents innervating different foot regions. Importantly, activity in this pathway is most facilitated during ARM&LEG movement. These results suggest that transmission in IN reflex pathways is weighted according to the number of limbs directly engaged in human locomotor activity and underscores the importance of arm swing to support neuronal excitability in leg muscles.
Collapse
Affiliation(s)
- Tsuyoshi Nakajima
- Department of Integrative Physiology, Kyorin University School of Medicine, Tokyo, Japan
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC, Canada
| | - Rinaldo A. Mezzarane
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC, Canada
- Laboratory of Signal Processing and Motor Control, College of Physical Education, University of Brasília, Brasília, Brazil
| | - Sandra R. Hundza
- Motion and Mobility Rehabilitation Laboratory, University of Victoria, Victoria, BC, Canada
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
- Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
| | | | - E. Paul Zehr
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC, Canada
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
- Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
18
|
Mezzarane RA, Nakajima T, Zehr EP. After stroke bidirectional modulation of soleus stretch reflex amplitude emerges during rhythmic arm cycling. Front Hum Neurosci 2014; 8:136. [PMID: 24701201 PMCID: PMC3965852 DOI: 10.3389/fnhum.2014.00136] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 02/23/2014] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES after stroke a typical presentation is exaggerated stretch reflexes (SRs) on the more affected (MA) side. The present study evaluated the contribution of presynaptic inhibition (PSI) induced by arm cycling and homosynaptic depression (HD) to the modulation of hyperreflexia at the ankle after stroke. Possible asymmetry of these effects between the MA and less affected (LA) legs was also assessed. METHODS soleus SR was conditioned by: arm cycling at 1 Hz (to increase Ia PSI); or, a preceding conditioning tendon tap applied 1 s before the test stimulus (to induce HD). The extent of conditioning effects was compared between the MA and the LA legs. RESULTS for both MA and LA legs, rhythmic arm movement induced a bidirectional effect in different participants, either increasing or decreasing SR amplitude (p < 0.05). HD had a significant effect in both legs (p < 0.05), however, the effect of both a previous muscle stretch and arm cycling was not different between the MA and the LA legs. CONCLUSION our data reveal a bidirectional reflex modulation induced by arm cycling that produced facilitation in some and suppression in other participants after stroke. Relative SR amplitude modulation did not differ between the LA and MA legs. We speculate that alterations in SR amplitude modulation after stroke may reflect specific changes in both presynaptic afferent transmission mechanisms and fusimotor control. SIGNIFICANCE the present findings open new perspectives on the characterization of pathophysiology of stroke during the performance of functionally relevant motor tasks.
Collapse
Affiliation(s)
- Rinaldo A. Mezzarane
- Laboratory of Signal Processing and Motor Control, University of Brasïlia, College of Physical EducationBrasïlia, Brazil
- Rehabilitation Neuroscience Laboratory, School of Exercise Science, Physical, and Health Education, University of VictoriaVictoria, BC, Canada
| | - Tsuyoshi Nakajima
- Rehabilitation Neuroscience Laboratory, School of Exercise Science, Physical, and Health Education, University of VictoriaVictoria, BC, Canada
- Department of Integrative Physiology, Kyorin University School of MedicineMitaka, Tokyo, Japan
| | - E. P. Zehr
- Rehabilitation Neuroscience Laboratory, School of Exercise Science, Physical, and Health Education, University of VictoriaVictoria, BC, Canada
- Human Discovery Science, International Collaboration on Repair DiscoveriesVancouver, BC, Canada
- Centre for Biomedical Research, University of VictoriaVictoria, BC, Canada
- Division of Medical Sciences, University of VictoriaBC, Canada
| |
Collapse
|
19
|
Sylos-Labini F, Ivanenko YP, MacLellan MJ, Cappellini G, Poppele RE, Lacquaniti F. Locomotor-like leg movements evoked by rhythmic arm movements in humans. PLoS One 2014; 9:e90775. [PMID: 24608249 PMCID: PMC3946538 DOI: 10.1371/journal.pone.0090775] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 02/04/2014] [Indexed: 12/21/2022] Open
Abstract
Motion of the upper limbs is often coupled to that of the lower limbs in human bipedal locomotion. It is unclear, however, whether the functional coupling between upper and lower limbs is bi-directional, i.e. whether arm movements can affect the lumbosacral locomotor circuitry. Here we tested the effects of voluntary rhythmic arm movements on the lower limbs. Participants lay horizontally on their side with each leg suspended in an unloading exoskeleton. They moved their arms on an overhead treadmill as if they walked on their hands. Hand-walking in the antero-posterior direction resulted in significant locomotor-like movements of the legs in 58% of the participants. We further investigated quantitatively the responses in a subset of the responsive subjects. We found that the electromyographic (EMG) activity of proximal leg muscles was modulated over each cycle with a timing similar to that of normal locomotion. The frequency of kinematic and EMG oscillations in the legs typically differed from that of arm oscillations. The effect of hand-walking was direction specific since medio-lateral arm movements did not evoke appreciably leg air-stepping. Using externally imposed trunk movements and biomechanical modelling, we ruled out that the leg movements associated with hand-walking were mainly due to the mechanical transmission of trunk oscillations. EMG activity in hamstring muscles associated with hand-walking often continued when the leg movements were transiently blocked by the experimenter or following the termination of arm movements. The present results reinforce the idea that there exists a functional neural coupling between arm and legs.
Collapse
Affiliation(s)
- Francesca Sylos-Labini
- Laboratory of Neuromotor Physiology, Santa Lucia Foundation, Rome, Italy
- Centre of Space Bio-medicine, University of Rome Tor Vergata, Rome, Italy
| | - Yuri P. Ivanenko
- Laboratory of Neuromotor Physiology, Santa Lucia Foundation, Rome, Italy
| | - Michael J. MacLellan
- Laboratory of Neuromotor Physiology, Santa Lucia Foundation, Rome, Italy
- Louisiana State University, School of Kinesiology, Baton Rouge, Louisiana, United States of America
| | - Germana Cappellini
- Laboratory of Neuromotor Physiology, Santa Lucia Foundation, Rome, Italy
- Centre of Space Bio-medicine, University of Rome Tor Vergata, Rome, Italy
| | - Richard E. Poppele
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Francesco Lacquaniti
- Laboratory of Neuromotor Physiology, Santa Lucia Foundation, Rome, Italy
- Centre of Space Bio-medicine, University of Rome Tor Vergata, Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
20
|
Arm sway holds sway: locomotor-like modulation of leg reflexes when arms swing in alternation. Neuroscience 2013; 258:34-46. [PMID: 24144625 DOI: 10.1016/j.neuroscience.2013.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 09/23/2013] [Accepted: 10/04/2013] [Indexed: 11/22/2022]
Abstract
It has been argued that arm movements are important during human gait because they affect leg activity due to neural coupling between arms and legs. Consequently, one would expect that locomotor-like alternating arm swing is more effective than in-phase swing in affecting the legs' motor output. Other alternating movements such as trunk rotation associated to arm swing could also affect leg reflexes. Here, we assessed how locomotor-like movement patterns would affect soleus H-reflexes in 13 subjects performing arm swing in the sagittal plane (ipsilateral, contralateral and bilateral in-phase versus locomotor-like anti-phase arm movements) and trunk rotation with the legs stationary, and leg stepping with the arms stationary. Findings revealed that soleus H-reflexes were suppressed for all arm, trunk or leg movements. However, a marked reflex modulation occurred during locomotor-like anti-phase arm swing, as was also the case during leg stepping, and this modulation flattened out during in-phase arm swing. This modulation had a peculiar bell shape and showed maximum suppression at a moment where the heel-strike would occur during a normal walking cycle. Furthermore, this modulation was independent from electromyographic activity, suggesting a spinal processing at premotoneuronal level. Therefore, trunk movement can affect legs' output, and a special neural coupling occurs between arms and legs when arms move in alternation. This may have implications for gait rehabilitation.
Collapse
|
21
|
Nakajima T, Mezzarane RA, Klarner T, Barss TS, Hundza SR, Komiyama T, Zehr EP. Neural mechanisms influencing interlimb coordination during locomotion in humans: presynaptic modulation of forearm H-reflexes during leg cycling. PLoS One 2013; 8:e76313. [PMID: 24204611 PMCID: PMC3799938 DOI: 10.1371/journal.pone.0076313] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 08/23/2013] [Indexed: 11/19/2022] Open
Abstract
Presynaptic inhibition of transmission between Ia afferent terminals and alpha motoneurons (Ia PSI) is a major control mechanism associated with soleus H-reflex modulation during human locomotion. Rhythmic arm cycling suppresses soleus H-reflex amplitude by increasing segmental Ia PSI. There is a reciprocal organization in the human nervous system such that arm cycling modulates H-reflexes in leg muscles and leg cycling modulates H-reflexes in forearm muscles. However, comparatively little is known about mechanisms subserving the effects from leg to arm. Using a conditioning-test (C-T) stimulation paradigm, the purpose of this study was to test the hypothesis that changes in Ia PSI underlie the modulation of H-reflexes in forearm flexor muscles during leg cycling. Subjects performed leg cycling and static activation while H-reflexes were evoked in forearm flexor muscles. H-reflexes were conditioned with either electrical stimuli to the radial nerve (to increase Ia PSI; C-T interval = 20 ms) or to the superficial radial (SR) nerve (to reduce Ia PSI; C-T interval = 37-47 ms). While stationary, H-reflex amplitudes were significantly suppressed by radial nerve conditioning and facilitated by SR nerve conditioning. Leg cycling suppressed H-reflex amplitudes and the amount of this suppression was increased with radial nerve conditioning. SR conditioning stimulation removed the suppression of H-reflex amplitude resulting from leg cycling. Interestingly, these effects and interactions on H-reflex amplitudes were observed with subthreshold conditioning stimulus intensities (radial n., ∼0.6×MT; SR n., ∼ perceptual threshold) that did not have clear post synaptic effects. That is, did not evoke reflexes in the surface EMG of forearm flexor muscles. We conclude that the interaction between leg cycling and somatosensory conditioning of forearm H-reflex amplitudes is mediated by modulation of Ia PSI pathways. Overall our results support a conservation of neural control mechanisms between the arms and legs during locomotor behaviors in humans.
Collapse
Affiliation(s)
- Tsuyoshi Nakajima
- Department of Integrative Physiology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, Canada
| | - Rinaldo A. Mezzarane
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, Canada
- Laboratory of Signal Processing and Motor Control, College of Physical Education, University of Brasília, Brasília, Brazil
| | - Taryn Klarner
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, Canada
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, Canada
- Centre for Biomedical Research, University of Victoria, Victoria, Canada
| | - Trevor S. Barss
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, Canada
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, Canada
- Centre for Biomedical Research, University of Victoria, Victoria, Canada
| | - Sandra R. Hundza
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, Canada
- Centre for Biomedical Research, University of Victoria, Victoria, Canada
- Motion and Mobility Laboratory, University of Victoria, Victoria, Canada
| | | | - E. Paul Zehr
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, Canada
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, Canada
- Centre for Biomedical Research, University of Victoria, Victoria, Canada
- Division of Medical Sciences, University of Victoria, Victoria, Canada
| |
Collapse
|
22
|
Shah PK, Garcia-Alias G, Choe J, Gad P, Gerasimenko Y, Tillakaratne N, Zhong H, Roy RR, Edgerton VR. Use of quadrupedal step training to re-engage spinal interneuronal networks and improve locomotor function after spinal cord injury. ACTA ACUST UNITED AC 2013; 136:3362-77. [PMID: 24103912 DOI: 10.1093/brain/awt265] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Can lower limb motor function be improved after a spinal cord lesion by re-engaging functional activity of the upper limbs? We addressed this issue by training the forelimbs in conjunction with the hindlimbs after a thoracic spinal cord hemisection in adult rats. The spinal circuitries were more excitable, and behavioural and electrophysiological analyses showed improved hindlimb function when the forelimbs were engaged simultaneously with the hindlimbs during treadmill step-training as opposed to training only the hindlimbs. Neuronal retrograde labelling demonstrated a greater number of propriospinal labelled neurons above and below the thoracic lesion site in quadrupedally versus bipedally trained rats. The results provide strong evidence that actively engaging the forelimbs improves hindlimb function and that one likely mechanism underlying these effects is the reorganization and re-engagement of rostrocaudal spinal interneuronal networks. For the first time, we provide evidence that the spinal interneuronal networks linking the forelimbs and hindlimbs are amenable to a rehabilitation training paradigm. Identification of this phenomenon provides a strong rationale for proceeding toward preclinical studies for determining whether training paradigms involving upper arm training in concert with lower extremity training can enhance locomotor recovery after neurological damage.
Collapse
Affiliation(s)
- Prithvi K Shah
- 1 Departments of Integrative Biology and Physiology, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Nakajima T, Barss T, Klarner T, Komiyama T, Zehr EP. Amplification of interlimb reflexes evoked by stimulating the hand simultaneously with conditioning from the foot during locomotion. BMC Neurosci 2013; 14:28. [PMID: 23497331 PMCID: PMC3605396 DOI: 10.1186/1471-2202-14-28] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 03/07/2013] [Indexed: 11/17/2022] Open
Abstract
Background Widespread interlimb reflexes evoked in leg muscles by cutaneous stimulation of the hand are phase-modulated and behaviorally relevant to produce functional changes in ankle trajectory during walking. These reflexes are complementary to the segmental responses evoked by stimulation at the ankle. Despite differences in the expression of reflex amplitude based upon site of nerve stimulation, there are some common features as well, suggesting the possibility of shared interneuronal pathways. Currently little is known about integration or shared reflex systems from interlimb cutaneous networks during human locomotion. Here we investigated convergent reflex effects following cutaneous stimulation of the hand and foot during arm and leg cycling (AL) by using spatial facilitation. Participants performed AL cycling and static activation of the target muscle knee extensor vastus lateralis (VL) in 3 different randomly ordered nerve stimulation conditions: 1) superficial radial nerve (SR; input from hand); 2) superficial peroneal nerve (SP; input from foot); and, 3) combined stimulation (SR + SP). Stimuli were applied around the onset of rhythmic EMG bursts in VL corresponding to the onset of the power or leg extension phase. Results During AL cycling, small inhibitory (~80 ms) and large facilitatory reflexes (~100 ~ 150 ms) were seen in VL. The amplitudes of the facilitatory responses with SR + SP stimulation were significantly larger than those for SP or SR stimulation alone. The facilitation was also significantly larger than the simple mathematical summation of amplitudes from SP and SR trials. This indicates extra facilitation beyond what would be accounted for by serial neuronal processing and was not observed during static activation. Conclusions We conclude that AL cycling activates shared interneurons in convergent reflex pathways from cutaneous inputs innervating the hand and leg. This enhanced activity has functional implications for corrective responses during locomotion and for translation to rehabilitation after neurotrauma.
Collapse
Affiliation(s)
- Tsuyoshi Nakajima
- Department of Integrative Physiology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Japan
| | | | | | | | | |
Collapse
|
24
|
Dragert K, Zehr EP. Differential modulation of reciprocal inhibition in ankle muscles during rhythmic arm cycling. Neurosci Lett 2013. [PMID: 23201634 DOI: 10.1016/j.neulet.2012.11.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Interlimb neural linkages relay activity related to rhythmic arm movement to the lumbar spinal cord. This is detected by modulated reflex amplitudes in muscles remote from the rhythmic movement. Improved understanding of modulation in ankle flexor and extensor muscles due to rhythmic arm movement can be gained using modulation of spinal excitability as a probe. The modulatory effect of rhythmic arm movement on Ia reciprocal inhibition (RI) between functional antagonists at the ankle has not been studied. We investigated the influence of rhythmic arm cycling on short latency (∼55ms post-stimulus) RI between ankle flexor (tibialis anterior, TA) and extensor (soleus, SOL) muscles at varying (0.9, 1.0, 1.2, 1.5 and 2.0× motor threshold (MT)) stimulus intensities. We hypothesized that arm cycling would increase RI between antagonists, but that movement conditioning would vary depending on stimulus intensity used to evoke the RI response. Amplitude of RI deduced from suppression of ongoing EMG activity was compared in static and arm cycling conditions. Arm cycling significantly (p<0.05) increased RI in SOL at 1.0×MT, but had no effect in TA at any stimulus intensity (p>0.05). Descending signals arising from rhythmic arm movement significantly alter transmission in RI pathways between ankle flexor and extensor muscles differentially. This may be due to differences in descending supraspinal inputs to ankle flexors vs. extensors, and could be related to functional requirements during locomotion.
Collapse
Affiliation(s)
- Katie Dragert
- Rehabilitation Neuroscience Laboratory, University of Victoria, BC, Canada
| | | |
Collapse
|
25
|
Thompson AK, Chen XY, Wolpaw JR. Soleus H-reflex operant conditioning changes the H-reflex recruitment curve. Muscle Nerve 2012; 47:539-44. [PMID: 23281107 DOI: 10.1002/mus.23620] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2012] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Operant conditioning can gradually change the human soleus H-reflex. The protocol conditions the reflex near M-wave threshold. In this study we examine its impact on the reflexes at other stimulus strengths. METHODS H-reflex recruitment curves were obtained before and after a 24-session exposure to an up-conditioning (HRup) or a down-conditioning (HRdown) protocol and were compared. RESULTS In both HRup and HRdown subjects, conditioning affected the entire H-reflex recruitment curve. In 5 of 6 HRup and 3 of 6 HRdown subjects, conditioning elevated (HRup) or depressed (HRdown), respectively, the entire curve. In the other HRup subject or the other 3 HRdown subjects, the curve was shifted to the left or to the right, respectively. CONCLUSIONS H-reflex conditioning does not simply change the H-reflex to a stimulus of particular strength; it also changes the H-reflexes to stimuli of different strengths. Thus, it is likely to affect many actions in which this pathway participates.
Collapse
Affiliation(s)
- Aiko K Thompson
- Helen Hayes Hospital, New York State Department of Health, Route 9W, West Haverstraw, New York 10993, USA.
| | | | | |
Collapse
|
26
|
Mezzarane RA, Kohn AF, Couto-Roldan E, Martinez L, Flores A, Manjarrez E. Absence of effects of contralateral group I muscle afferents on presynaptic inhibition of Ia terminals in humans and cats. J Neurophysiol 2012; 108:1176-85. [PMID: 22673332 DOI: 10.1152/jn.00831.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Crossed effects from group I afferents on reflex excitability and their mechanisms of action are not yet well understood. The current view is that the influence is weak and takes place indirectly via oligosynaptic pathways. We examined possible contralateral effects from group I afferents on presynaptic inhibition of Ia terminals in humans and cats. In resting and seated human subjects the soleus (SO) H-reflex was conditioned by an electrical stimulus to the ipsilateral common peroneal nerve (CPN) to assess the level of presynaptic inhibition (PSI_control). A brief conditioning vibratory stimulus was applied to the triceps surae tendon at the contralateral side (to activate preferentially Ia muscle afferents). The amplitude of the resulting H-reflex response (PSI_conditioned) was compared to the H-reflex under PSI_control, i.e., without the vibration. The interstimulus interval between the brief vibratory stimulus and the electrical shock to the CPN was -60 to 60 ms. The H-reflex conditioned by both stimuli did not differ from that conditioned exclusively by the ipsilateral CPN stimulation. In anesthetized cats, bilateral monosynaptic reflexes (MSRs) in the left and right L(7) ventral roots were recorded simultaneously. Conditioning stimulation applied to the contralateral group I posterior biceps and semitendinosus (PBSt) afferents at different time intervals (0-120 ms) did not have an effect on the ipsilateral gastrocnemius/soleus (GS) MSR. An additional experimental paradigm in the cat using contralateral tendon vibration, similar to that conducted in humans, was also performed. No significant differences between GS-MSRs conditioned by ipsilateral PBSt stimulus alone and those conditioned by both ipsilateral PBSt stimulus and contralateral tendon vibration were detected. The present results strongly suggest an absence of effects from contralateral group I fibers on the presynaptic mechanism of MSR modulation in relaxed humans and anesthetized cats.
Collapse
|
27
|
Thompson AK. Interlimb coordination during locomotion: Finding available neural pathways and using them for gait recovery. Clin Neurophysiol 2012; 123:635-7. [DOI: 10.1016/j.clinph.2011.08.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 08/19/2011] [Accepted: 08/22/2011] [Indexed: 10/17/2022]
|
28
|
Zehr EP, Loadman PM. Persistence of locomotor-related interlimb reflex networks during walking after stroke. Clin Neurophysiol 2011; 123:796-807. [PMID: 21945456 DOI: 10.1016/j.clinph.2011.07.049] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 07/04/2011] [Accepted: 07/07/2011] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Cutaneous nerve stimulation evokes coordinated and phase-modulated reflex output widely distributed to muscles of all four limbs during walking. Accessibility to this distributed network after stroke offers insight into the pathological changes and suggests utility for therapeutic applications. Here we examined muscles in both the more (MA) and less affected (LA) legs evoked by stimulation at the ankle and wrist during walking in chronic (>6 months post CVA) stroke. METHODS Stroke and control participants walked on a treadmill with a harness support system. Reflexes were evoked with trains of electrical stimuli delivered separately to the cutaneous superficial peroneal (SP; at the ankle) and superficial radial (SR; at the wrist) nerves. Background locomotor and reflex EMG were phase-averaged across the gait cycle and analyzed off line. RESULTS Locomotor background muscle activation patterns were altered bilaterally in stroke, as compared with control. Phase-dependent modulation of interlimb cutaneous reflexes was found in both stroke and control subjects with stimulation of each nerve, but responses were blunted in stroke. Reflex reversal in tibialis anterior (TA) at heel strike with SP nerve stimulation was present in both groups. Notably, SR nerve stimulation produced facilitation during the swing-to-stance transition in the TA and suppression of MG in the MA leg during stance. CONCLUSIONS Interlimb cutaneous inputs may access coordinated reflex pathways in the MA limb during walking after stroke. Importantly activation in these pathways could provoke responses to counter foot drop during swing phase of walking. Additionally, our data support the perspective that there is no "unaffected" side after stroke and that caution should be used when interpreting the LA side as "control" after stroke. SIGNIFICANCE The presence of functionally-relevant interlimb cutaneous reflexes in the MA leg presents a substrate that may be strengthened by rehabilitation.
Collapse
Affiliation(s)
- E Paul Zehr
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC, Canada.
| | | |
Collapse
|
29
|
Ridgel AL, Muller MD, Kim CH, Fickes EJ, Mera TO. Acute effects of passive leg cycling on upper extremity tremor and bradykinesia in Parkinson's disease. PHYSICIAN SPORTSMED 2011; 39:83-93. [PMID: 22030944 DOI: 10.3810/psm.2011.09.1924] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Previous studies have shown that single bouts of high-rate active cycling (> 80 rpm) improve upper extremity motor function in individuals with Parkinson's disease (PD). It is unknown if passive leg cycling produces a similar effect on upper extremity function. This article examines whether passive leg cycling can promote immediate changes in upper tremor and bradykinesia in PD and if pedaling rates have variable effects. METHODS Twenty individuals with mild-to-moderate idiopathic PD completed 4 sessions, with each session taking place 1 week apart. In the second to fourth sessions, a motorized bicycle was set to passively rotate the subjects' legs at rates of 60, 70, or 80 rpm for 30 minutes. Quantitative upper extremity motor assessments were completed immediately before and after each session. RESULTS Passive leg cycling was shown to reduce tremor and bradykinesia in PD. However, the rate of passive cycling did not affect the degree of improvement in bradykinesia or tremor. CONCLUSION These findings suggest that lower extremity passive cycling can promote changes in upper extremity motor function in individuals with PD.
Collapse
Affiliation(s)
- Angela L Ridgel
- Department of Exercise Physiology, Kent State University, Kent, OH, USA.
| | | | | | | | | |
Collapse
|
30
|
Nakajima T, Kitamura T, Kamibayashi K, Komiyama T, Zehr EP, Hundza SR, Nakazawa K. Robotic-assisted stepping modulates monosynaptic reflexes in forearm muscles in the human. J Neurophysiol 2011; 106:1679-87. [PMID: 21775718 DOI: 10.1152/jn.01049.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although the amplitude of the Hoffmann (H)-reflex in the forelimb muscles is known to be suppressed during rhythmic leg movement, it is unknown which factor plays a more important role in generating this suppression-movement-related afferent feedback or feedback related to body loading. To specifically explore the movement- and load-related afferent feedback, we investigated the modulation of the H-reflex in the flexor carpi radialis (FCR) muscle during robotic-assisted passive leg stepping. Passive stepping and standing were performed using a robotic gait-trainer system (Lokomat). The H-reflex in the FCR, elicited by electrical stimulation to the median nerve, was recorded at 10 different phases of the stepping cycle, as well as during quiet standing. We confirmed that the magnitude of the FCR H-reflex was suppressed significantly during passive stepping compared with during standing. The suppressive effect on the FCR H-reflex amplitude was seen at all phases of stepping, irrespective of whether the stepping was conducted with body weight loaded or unloaded. These results suggest that movement-related afferent feedback, rather than load-related afferent feedback, plays an important role in suppressing the FCR H-reflex amplitude.
Collapse
Affiliation(s)
- Tsuyoshi Nakajima
- Motor Control Section, Dept. of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Saitama 359-8555, Japan.
| | | | | | | | | | | | | |
Collapse
|