1
|
de Freitas PB, Freitas SMSF, Dias MS. Synergic control of the minimum toe clearance in young and older adults during foot swing on treadmill walking in different speeds. Gait Posture 2024; 111:150-155. [PMID: 38703443 DOI: 10.1016/j.gaitpost.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND The vertical toe position at minimum toe clearance (MTC) in the swing phase is critical for walking safety. Consequently, the joints involved should be strictly controlled and coordinated to stabilize the foot at MTC. The uncontrolled manifold (UCM) hypothesis framework has been used to determine the existence of synergies that stabilize relevant performance variables during walking. However, no study investigated the presence of a multi-joint synergy stabilizing the foot position at MTC and the effects of age and walking speed on this synergy. RESEARCH QUESTIONS Is there a multi-joint synergy stabilizing MTC during treadmill walking? Does it depend on the persons' age and walking speed? METHODS Kinematic data from 23 young and 15 older adults were analyzed using the UCM approach. The participants walked on a treadmill at three speeds: slow, self-selected, and fast. The sagittal and frontal joint angles from the swing and stance legs and pelvis obliquity were used as motor elements and the vertical toe position at MTC was the performance variable. The variances in the joint space that affected (VORT, 'bad' variance) and did not affect (VUCM, 'good' variance) the toe position at MTC and the synergy index (ΔV) were computed. RESULTS The ΔV>0 was revealed for all subjects. Walking speed did not affect ΔV in older adults, whereas ΔV reduced with speed in young adults. ΔV was higher for older than for young adults at self-selected and fast speeds, owing to a lower VORT in the older group. SIGNIFICANCE The vertical toe position at MTC was stabilized by a strong multi-joint synergy. In older adults, this synergy was stronger, as they were better at limiting VORT than young adults. Reduced VORT in older adults could be caused by more constrained walking, which may be associated with anxiety due to walking on a treadmill.
Collapse
Affiliation(s)
- Paulo B de Freitas
- Interdisciplinary Graduate Program in Health Sciences, Universidade Cruzeiro do Sul, São Paulo, Rua Galvão Bueno, 868, Liberdade, São Paulo, SP 01506-000, Brazil.
| | - Sandra M S F Freitas
- Graduate Program in Physical Therapy. Universidade Cidade de São Paulo, São Paulo, Rua Cesário Galeno, 475, Tatuapé, São Paulo, SP 03071-000, Brazil.
| | - Mateus S Dias
- Interdisciplinary Graduate Program in Health Sciences, Universidade Cruzeiro do Sul, São Paulo, Rua Galvão Bueno, 868, Liberdade, São Paulo, SP 01506-000, Brazil.
| |
Collapse
|
2
|
Moon J, Koo D, Kim S, Panday SB. Effect of sprinting velocity on anterior cruciate ligament and knee load during sidestep cutting. Front Bioeng Biotechnol 2023; 11:1033590. [PMID: 36824350 PMCID: PMC9941960 DOI: 10.3389/fbioe.2023.1033590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
The purpose of the study was to investigate the effect of an increase in sprinting velocity on the anterior cruciate ligament (ACL) load, knee joint load, and activation of femoral muscles using the musculoskeletal modeling approach. Fourteen high school male athletes were recruited (age: 17.4 ± 0.7 years, height: 1.75 ± 0.04 m, weight: 73.3 ± 8.94 kg), with the right foot dominant and physical activity level of about 3-4 h per day. The kinematics, kinetics, and co-contraction index (CCI) of the extensors and flexors of the right leg's femoral muscles were calculated. The anterior cruciate ligament load was estimated using the musculoskeletal modeling method. In the results, it was observed that the anterior cruciate ligament load (p < 0.017) increased as sidestep cutting velocity increased, resulting in increased adduction (p < 0.017) and the internal rotation moment of the knee joint. This was significantly higher than when sprinting at a similar velocity. The co-contraction index result, which represents the balanced activation of the femoral extensor and flexor muscles, showed a tendency of decrement with increasing sprinting velocity during sidestep cutting (p < 0.017), whereas no significant differences were observed when running at different sprinting conditions. Therefore, we postulate that factors such as knee joint shear force, extended landing posture with increasing sprinting velocity, internal rotation moment, and femoral muscle activity imbalance influence the increase of anterior cruciate ligament load during a sidestep cutting maneuver.
Collapse
Affiliation(s)
- Jeheon Moon
- Department of Physical Education, Korea National University of Education, Chungbuk, Republic ofKorea
| | - Dohoon Koo
- Department of Exercise Prescription, Jeonju University, Chonbuk, Republic ofKorea
| | - Sungmin Kim
- Institute of School Physical Education, Korea National University of Education, Chungbuk, Republic ofKorea
| | - Siddhartha Bikram Panday
- Department of Physical Education, Hanyang University, Seoul, Republic ofKorea,Department of Art and Sportainment, Hanyang University, Seoul, Republic ofKorea,*Correspondence: Siddhartha Bikram Panday,
| |
Collapse
|
3
|
Moreira J, Silva B, Faria H, Santos R, Sousa ASP. Systematic Review on the Applicability of Principal Component Analysis for the Study of Movement in the Older Adult Population. SENSORS (BASEL, SWITZERLAND) 2022; 23:205. [PMID: 36616803 PMCID: PMC9823400 DOI: 10.3390/s23010205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/28/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Principal component analysis (PCA) is a dimensionality reduction method that has identified significant differences in older adults' motion analysis previously not detected by the discrete exploration of biomechanical variables. This systematic review aims to synthesize the current evidence regarding PCA use in the study of movement in older adults (kinematics and kinetics), summarizing the tasks and biomechanical variables studied. From the search results, 1685 studies were retrieved, and 19 studies were included for review. Most of the included studies evaluated gait or quiet standing. The main variables considered included spatiotemporal parameters, range of motion, and ground reaction forces. A limited number of studies analyzed other tasks. Further research should focus on the PCA application in tasks other than gait to understand older adults' movement characteristics that have not been identified by discrete analysis.
Collapse
Affiliation(s)
- Juliana Moreira
- Center for Rehabilitation Research–Human Movement System (Re)habilitation Area, Department of Physiotherapy, School of Health, Polytechnic of Porto, 4200-072 Porto, Portugal
- Research Center in Physical Activity, Health and Leisure, Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
| | - Bruno Silva
- School of Health, Polytechnic of Porto, 4200-072 Porto, Portugal
| | - Hugo Faria
- School of Health, Polytechnic of Porto, 4200-072 Porto, Portugal
| | - Rubim Santos
- Center for Rehabilitation Research–Human Movement System (Re)habilitation Area, Department of Physics, School of Health, Polytechnic of Porto, 4200-072 Porto, Portugal
| | - Andreia S. P. Sousa
- Center for Rehabilitation Research–Human Movement System (Re)habilitation Area, Department of Physiotherapy, School of Health, Polytechnic of Porto, 4200-072 Porto, Portugal
| |
Collapse
|
4
|
Cui C, Kulkarni A, Rietdyk S, Barbieri FA, Ambike S. Synergies in the ground reaction forces and moments during double support in curb negotiation in young and older adults. J Biomech 2020; 106:109837. [DOI: 10.1016/j.jbiomech.2020.109837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/21/2020] [Accepted: 05/02/2020] [Indexed: 12/28/2022]
|
5
|
Liu CH, Lee P, Chen YL, Yen CW, Yu CW. Study of Postural Stability Features by Using Kinect Depth Sensors to Assess Body Joint Coordination Patterns. SENSORS (BASEL, SWITZERLAND) 2020; 20:E1291. [PMID: 32120938 PMCID: PMC7085587 DOI: 10.3390/s20051291] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/17/2020] [Accepted: 02/21/2020] [Indexed: 11/16/2022]
Abstract
A stable posture requires the coordination of multiple joints of the body. This coordination of the multiple joints of the human body to maintain a stable posture is a subject of research. The number of degrees of freedom (DOFs) of the human motor system is considerably larger than the DOFs required for posture balance. The manner of managing this redundancy by the central nervous system remains unclear. To understand this phenomenon, in this study, three local inter-joint coordination pattern (IJCP) features were introduced to characterize the strength, changing velocity, and complexity of the inter-joint couplings by computing the correlation coefficients between joint velocity signal pairs. In addition, for quantifying the complexity of IJCPs from a global perspective, another set of IJCP features was introduced by performing principal component analysis on all joint velocity signals. A Microsoft Kinect depth sensor was used to acquire the motion of 15 joints of the body. The efficacy of the proposed features was tested using the captured motions of two age groups (18-24 and 65-73 years) when standing still. With regard to the redundant DOFs of the joints of the body, the experimental results suggested that an inter-joint coordination strategy intermediate to that of the two extreme coordination modes of total joint dependence and independence is used by the body. In addition, comparative statistical results of the proposed features proved that aging increases the coupling strength, decreases the changing velocity, and reduces the complexity of the IJCPs. These results also suggested that with aging, the balance strategy tends to be more joint dependent. Because of the simplicity of the proposed features and the affordability of the easy-to-use Kinect depth sensor, such an assembly can be used to collect large amounts of data to explore the potential of the proposed features in assessing the performance of the human balance control system.
Collapse
Affiliation(s)
- Chin-Hsuan Liu
- Department of Computer Science and Information Engineering, National Taipei University of Technology, Taipei 10608, Taiwan; (C.-H.L.); (C.-W.Y.)
| | - Posen Lee
- Department of Occupational Therapy, I-Shou University, Kaohsiung 82445, Taiwan;
| | - Yen-Lin Chen
- Department of Computer Science and Information Engineering, National Taipei University of Technology, Taipei 10608, Taiwan; (C.-H.L.); (C.-W.Y.)
| | - Chen-Wen Yen
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Chao-Wei Yu
- Department of Computer Science and Information Engineering, National Taipei University of Technology, Taipei 10608, Taiwan; (C.-H.L.); (C.-W.Y.)
| |
Collapse
|
6
|
Kong J, Kim K, Joung HJ, Chung CY, Park J. Effects of spastic cerebral palsy on multi-finger coordination during isometric force production tasks. Exp Brain Res 2019; 237:3281-3295. [DOI: 10.1007/s00221-019-05671-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/17/2019] [Indexed: 11/28/2022]
|
7
|
Shafizadeh M, Sharifnezhad A, Wheat J. Age-related changes to motor synergies in multi-joint and multi-finger manipulative skills: a meta-analysis. Eur J Appl Physiol 2019; 119:2349-2362. [PMID: 31473806 PMCID: PMC6763531 DOI: 10.1007/s00421-019-04216-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/21/2019] [Indexed: 12/02/2022]
Abstract
Purpose The aim of the current meta-analysis was to examine the extent to which there are differences in upper extremity motor synergies across different age groups in manipulative tasks. Methods The studies that used the uncontrolled manifold method to examine the effect of age on motor synergies in multi-joint and multi-finger tasks were selected. Sixteen relevant studies from 1154 articles were selected for the meta-analysis—4 and 12 studies considered multi-joint kinematics and multi-finger kinetic tasks respectively. Results The results of the meta-analysis suggested reduced strength of synergies in multi-finger task in older adults, but this was not the case for synergies in multi-joint task. Part of this age-related difference in finger function is related to the increased variability in total force in grasping tasks. However, reductions in the strength of multi-finger synergies in hand functions following ageing appear to depend on the characteristics of the task. Conclusions These findings indicate that the cooperation among fingers to stabilise the total required force to apply for grasping and other fine motor skills is less efficient in older adults that might affect the quality of manipulative tasks.
Collapse
Affiliation(s)
- Mohsen Shafizadeh
- Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield, S10 2BP, UK.
| | - Ali Sharifnezhad
- Department of Sport Biomechanics, Sport Sciences Research Institute, Tehran, Iran
| | - Jonathan Wheat
- Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield, S10 2BP, UK
| |
Collapse
|
8
|
Effect of Kinetic Degrees of Freedom on Multi-Finger Synergies and Task Performance during Force Production and Release Tasks. Sci Rep 2018; 8:12758. [PMID: 30143688 PMCID: PMC6109105 DOI: 10.1038/s41598-018-31136-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/13/2018] [Indexed: 11/08/2022] Open
Abstract
Complex structures present in a human body has relatively large degrees-of-freedom (DOFs) as compared to the requirement of a particular task. This phenomenon called motor redundancy initially deemed as a computational problem rather can be understood as having the flexibility to perform the certain task successfully. Hence, the purpose of our study was to examine the positive impact of extra DOFs (redundant DOFs) during force production tasks. For this purpose, an experimental setup was designed to simulate archery-like shooting, and purposeful organization of a redundant set of finger forces determined the stability of important performance variables as well as accurate and precise performance. DOFs were adjusted by changing the number of fingers explicitly involved in the task. The concept of motor synergy and computational framework of uncontrolled manifold (UCM) approach was used to quantify stability indices during finger force production. As a result, accuracy and precision of the task improved with an increase in DOFs. Also, the stability indices of net finger forces and moment increased with active DOFs of fingers. We concluded that the controller actively utilizes extra DOFs to increase the stability of the performance, which is associated with the improved accuracy and precision of the task.
Collapse
|
9
|
Carson RG. Get a grip: individual variations in grip strength are a marker of brain health. Neurobiol Aging 2018; 71:189-222. [PMID: 30172220 DOI: 10.1016/j.neurobiolaging.2018.07.023] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 07/06/2018] [Accepted: 07/29/2018] [Indexed: 02/06/2023]
Abstract
Demonstrations that grip strength has predictive power in relation to a range of health conditions-even when these are assessed decades later-has motivated claims that hand-grip dynamometry has the potential to serve as a "vital sign" for middle-aged and older adults. Central to this belief has been the assumption that grip strength is a simple measure of physical performance that provides a marker of muscle status in general, and sarcopenia in particular. It is now evident that while differences in grip strength between individuals are influenced by musculoskeletal factors, "lifespan" changes in grip strength within individuals are exquisitely sensitive to integrity of neural systems that mediate the control of coordinated movement. The close and pervasive relationships between age-related declines in maximum grip strength and expressions of cognitive dysfunction can therefore be understood in terms of the convergent functional and structural mediation of cognitive and motor processes by the human brain. In the context of aging, maximum grip strength is a discriminating measure of neurological function and brain health.
Collapse
Affiliation(s)
- Richard G Carson
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland; School of Psychology, Queen's University Belfast, Belfast, Northern Ireland, UK; School of Human Movement and Nutrition Sciences, The University of Queensland, Australia.
| |
Collapse
|
10
|
Tillman M, Ambike S. Expectation of movement generates contrasting changes in multifinger synergies in young and older adults. Exp Brain Res 2018; 236:2765-2780. [PMID: 30022260 DOI: 10.1007/s00221-018-5333-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/14/2018] [Indexed: 12/28/2022]
Abstract
Anticipatory synergy adjustment (ASA) is a feed-forward control mechanism that describes a continuous decrease in the stability of the current motor state beginning about 150 ms prior to a state transition. Recently, we described an associated phenomenon in which the system stability was reduced solely in response to a cue that generates an expectation of a state change, independent of whether the state change actually occurs. Both phenomena are of the same kind (stability reduction), but evoked by distinct antecedent conditions. Since, logically, cuing for movement must occur before the initiation of that movement, we named this new phenomenon 'Stage-1 ASA' and rechristened the well-established version 'Stage-2 ASA'. Here, we used a four-finger, isometric force production task to explore (1) the effect of healthy aging on Stage-1 ASA, and (2) if Stage-1 ASA resulted in a more rapid state change. Young and older adult participants produced 10% of their maximal force when they did not expect to produce any change in the force, and when they expected to change their force in an unknown direction and at an unknown time. In the latter condition, the 10% constant-force phase was followed by a choice reaction time task, in which the participants rapidly changed their force to follow a moving target presented on a computer monitor. Both young and older adults displayed equivalent amount of Stage-1 ASA. This was driven by a 42% reduction in finger-force variability in young adults. In contrast, it was driven by a 38% increase in finger-force variability in older adults. We speculate that the reduction in finger force variability assists the young adults in rapid state changes via two mechanisms: (1) the finger forces occupy a restricted set of states that are optimal for quick state transitions, and (2) lower variability during steady state translates into lower self-motion during state transition. Self-motion is the covariation between finger forces that fails to change the total force. The older adults are unable to adopt this strategy, and the increase in finger-force variability arises from (1) the adoption of an alternative strategy of destabilizing the attractor associated with the current state to facilitate state transitions and (2) the inability to coordinate multiple finger forces. Finally, older adults displayed longer reaction times than young adults, but a clear relation between Stage-1 ASA and consequent behavioral benefit in terms of reduced reaction time remained elusive.
Collapse
Affiliation(s)
- Mitchell Tillman
- Department of Health and Kinesiology, Purdue University, 800 West Stadium Ave, West Lafayette, IN, 47907, USA
| | - Satyajit Ambike
- Department of Health and Kinesiology, Purdue University, 800 West Stadium Ave, West Lafayette, IN, 47907, USA.
| |
Collapse
|
11
|
Anan M, Hattori H, Tanimoto K, Wakimoto Y, Ibara T, Kito N, Shinkoda K. The coordination of joint movements during sit-to-stand motion in old adults: the uncontrolled manifold analysis. Phys Ther Res 2017; 20:44-50. [PMID: 29333362 DOI: 10.1298/ptr.e9923] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 09/27/2017] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Sit-to-stand motion (STS) is a dynamic motion utilized in fundamental activities of daily living and requires extensive joint movement in the lower extremities and the trunk and coordination of multiple body segments. The present study aimed to investigate whether aging affects the motor coordination of joint movements required to stabilize the horizontal and vertical movement of center of mass using the uncontrolled manifold (UCM) analysis. METHOD We recruited 39 older adults with no musculoskeletal and/or neuromuscular conditions that affected STS, along with 21 healthy younger adults. All subjects performed five STS trials from a chair with the seat height adjusted to the length of their lower leg at a self-selected motion speed. Kinematic data were collected using a three-dimensional motion analysis system. We performed the UCM analysis to assess the effects of joint angle variance (elemental variable) to stabilize the horizontal and vertical movement of COM (performance variable) and calculated the joint angle variance that does not affect COM (VUCM), the variance that affects COM (VORT), and the synergy index (ΔV). RESULTS ΔV values in the horizontal direction were higher in the older adults than in the younger adults, but ΔV values in the vertical direction were lower in the older adults than in the younger adults. CONCLUSION Older adults require increasing levels of stabilization of horizontal movement of COM after buttocks-off in the STS maneuver. As a result, variance in the joint angle of the lower extremities indicated no kinematic synergy for stabilizing the vertical movement of COM.
Collapse
Affiliation(s)
- Masaya Anan
- Physical Therapy Course, Faculty of Welfare and Health Science, Oita University
| | | | - Kenji Tanimoto
- Graduate School of Biomedical & Health Sciences, Hiroshima University
| | | | | | | | - Koichi Shinkoda
- Department of Biomechanics, Institute of Biomedical and Health Sciences, Hiroshima University
| |
Collapse
|
12
|
Parsa B, Terekhov A, Zatsiorsky VM, Latash ML. Optimality and stability of intentional and unintentional actions: I. Origins of drifts in performance. Exp Brain Res 2017; 235:481-496. [PMID: 27785549 PMCID: PMC5274564 DOI: 10.1007/s00221-016-4809-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 10/19/2016] [Indexed: 10/20/2022]
Abstract
We address the nature of unintentional changes in performance in two papers. This first paper tested a hypothesis that unintentional changes in performance variables during continuous tasks without visual feedback are due to two processes. First, there is a drift of the referent coordinate for the salient performance variable toward the actual coordinate of the effector. Second, there is a drift toward minimum of a cost function. We tested this hypothesis in four-finger isometric pressing tasks that required the accurate production of a combination of total moment and total force with natural and modified finger involvement. Subjects performed accurate force-moment production tasks under visual feedback, and then visual feedback was removed for some or all of the salient variables. Analytical inverse optimization was used to compute a cost function. Without visual feedback, both force and moment drifted slowly toward lower absolute magnitudes. Over 15 s, the force drop could reach 20% of its initial magnitude while moment drop could reach 30% of its initial magnitude. Individual finger forces could show drifts toward both higher and lower forces. The cost function estimated using the analytical inverse optimization reduced its value as a consequence of the drift. We interpret the results within the framework of hierarchical control with referent spatial coordinates for salient variables at each level of the hierarchy combined with synergic control of salient variables. The force drift is discussed as a natural relaxation process toward states with lower potential energy in the physical (physiological) system involved in the task.
Collapse
Affiliation(s)
- Behnoosh Parsa
- Department of Kinesiology, The Pennsylvania State University, Rec.Hall-268 N, University Park, PA, 16802, USA
| | - Alexander Terekhov
- Laboratory of Psychology of Perception, University of Paris Descartes, Paris, France
| | - Vladimir M Zatsiorsky
- Department of Kinesiology, The Pennsylvania State University, Rec.Hall-268 N, University Park, PA, 16802, USA
| | - Mark L Latash
- Department of Kinesiology, The Pennsylvania State University, Rec.Hall-268 N, University Park, PA, 16802, USA.
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| |
Collapse
|
13
|
Hong CY, Guo LY, Song R, Nagurka ML, Sung JL, Yen CW. Assessing postural stability via the correlation patterns of vertical ground reaction force components. Biomed Eng Online 2016; 15:90. [PMID: 27485525 PMCID: PMC4969977 DOI: 10.1186/s12938-016-0212-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/24/2016] [Indexed: 12/16/2022] Open
Abstract
Background Many methods have been proposed to assess the stability of human postural balance by using a force plate. While most of these approaches characterize postural stability by extracting features from the trajectory of the center of pressure (COP), this work develops stability measures derived from components of the ground reaction force (GRF). Methods In comparison with previous GRF-based approaches that extract stability features from the GRF resultant force, this study proposes three feature sets derived from the correlation patterns among the vertical GRF (VGRF) components. The first and second feature sets quantitatively assess the strength and changing speed of the correlation patterns, respectively. The third feature set is used to quantify the stabilizing effect of the GRF coordination patterns on the COP. Results In addition to experimentally demonstrating the reliability of the proposed features, the efficacy of the proposed features has also been tested by using them to classify two age groups (18–24 and 65–73 years) in quiet standing. The experimental results show that the proposed features are considerably more sensitive to aging than one of the most effective conventional COP features and two recently proposed COM features. Conclusions By extracting information from the correlation patterns of the VGRF components, this study proposes three sets of features to assess human postural stability during quiet standing. As demonstrated by the experimental results, the proposed features are not only robust to inter-trial variability but also more accurate than the tested COP and COM features in classifying the older and younger age groups. An additional advantage of the proposed approach is that it reduces the force sensing requirement from 3D to 1D, substantially reducing the cost of the force plate measurement system.
Collapse
Affiliation(s)
- Chih-Yuan Hong
- Department of Mechanical and Electromechanical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Lan-Yuen Guo
- Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Rong Song
- School of Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Mark L Nagurka
- Department of Mechanical Engineering, Marquette University, Milwaukee, WI, USA
| | - Jia-Li Sung
- Department of Mechanical and Electromechanical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chen-Wen Yen
- Department of Mechanical and Electromechanical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan. .,Department of Physical Therapy, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
14
|
Parsa B, Ambike S, Terekhov A, Zatsiorsky VM, Latash ML. Analytical Inverse Optimization in Two-Hand Prehensile Tasks. J Mot Behav 2016; 48:424-34. [PMID: 27254391 DOI: 10.1080/00222895.2015.1123140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The authors explored application of analytical inverse optimization (ANIO) method to the normal finger forces in unimanual and bimanual prehensile tasks with discrete and continuously changing constraints. The subjects held an instrumented handle vertically with one or two hands. The external torque and grip force changed across trials or within a trial continuously. Principal component analysis showed similar percentages of variance accounted for by the first two principal components across tasks and conditions. Compared to unimanual tasks, bimanual tasks showed significantly more frequent inability to find a cost function leading to a stable solution. In cases of stable solutions, similar second-order polynomials were computed as cost functions across tasks and condition. The bimanual tasks, however, showed significantly worse goodness-of-fit index values. The authors show that ANIO can be used in tasks with slowly changing constraints making it an attractive tool to study optimality of performance in special populations. They also show that ANIO can fail in multifinger tasks, likely due to irreproducible behavior across trials, more likely to happen in bimanual tasks compared to unimanual tasks.
Collapse
Affiliation(s)
- Behnoosh Parsa
- a Department of Kinesiology , The Pennsylvania State University University Park , Pennsylvania
| | - Satyajit Ambike
- b Department of Health and Kinesiology , Purdue University , South Bend , Indiana
| | - Alexander Terekhov
- c Laboratory of Psychology of Perception, University of Paris Descartes , France
| | - Vladimir M Zatsiorsky
- a Department of Kinesiology , The Pennsylvania State University University Park , Pennsylvania
| | - Mark L Latash
- a Department of Kinesiology , The Pennsylvania State University University Park , Pennsylvania
| |
Collapse
|
15
|
Morrison A, McGrath D, Wallace ES. Motor abundance and control structure in the golf swing. Hum Mov Sci 2016; 46:129-47. [PMID: 26784706 DOI: 10.1016/j.humov.2016.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 01/12/2016] [Accepted: 01/12/2016] [Indexed: 11/16/2022]
Abstract
Variability and control structure are under-represented areas of golf swing research. This study investigated the use of the abundant degrees of freedom in the golf swing of high and intermediate skilled golfers using uncontrolled manifold (UCM) analysis. The variance parallel to (VUCM) and orthogonal to (VOrth) the UCM with respect to the orientation and location of the clubhead were calculated. The higher skilled golfers had proportionally higher values of VUCM than lower skilled players for all measured outcome variables. Motor synergy was found in the control of the orientation of the clubhead and the combined outcome variables but not for clubhead location. Clubhead location variance zeroed-in on impact as has been previously shown, whereas clubhead orientation variance increased near impact. Both skill levels increased their control over the clubhead location leading up to impact, with more control exerted over the clubhead orientation in the early downswing. The results suggest that to achieve higher skill levels in golf may not lie simply in optimal technique, but may lie more in developing control over the abundant degrees of freedom in the body.
Collapse
Affiliation(s)
- A Morrison
- Sport and Exercise Science Research Institute, Ulster University, UK.
| | - D McGrath
- School of Public Health, Physiotherapy and Population Science, University College Dublin, Ireland
| | - E S Wallace
- Sport and Exercise Science Research Institute, Ulster University, UK
| |
Collapse
|
16
|
Park J, Han DW, Shim JK. Effect of Resistance Training of the Wrist Joint Muscles on Multi-Digit Coordination. Percept Mot Skills 2015; 120:816-40. [DOI: 10.2466/25.26.pms.120v16x9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This study investigated the effects of a specific regimen of resistance training on coordinated actions of human hand digits during grasping. Participants were instructed to hold a rectangular object with all five digits and to maintain the orientation of the object against transient perturbation. Indices of co-varied actions (i.e., synergies) among multi-digit grasping and rotational actions were quantified. The index of anticipatory changes of co-varied actions among digit forces (i.e., anticipatory synergy adjustment) was also quantified, which represents the controller's ability to predict an upcoming perturbation. The synergies of both grasping force and moment stabilization increased with the training. No change in the index of anticipatory synergy adjustment with training was observed. The current results suggest that the resistance training on the wrist could be an effective way to enhance both voluntary muscle force/torque production capability and ability to stabilize task performances during multi-digit prehensile tasks.
Collapse
Affiliation(s)
- Jaebum Park
- Department of Health and Human Development, Montana State University
| | - Dong-Wook Han
- Department of Sport Science, Chonbuk National University
| | - Jae Kun Shim
- Department of Mechanical Engineering, Kyung Hee University and Department of Kinesiology, University of Maryland
| |
Collapse
|
17
|
Solnik S, Zatsiorsky VM, Latash ML. Internal forces during static prehension: effects of age and grasp configuration. J Mot Behav 2014; 46:211-22. [PMID: 24650078 DOI: 10.1080/00222895.2014.881315] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The authors studied effects of healthy aging on 3 components of the internal force vector during static prehensile tasks. Young and older subjects held an instrumented handle using a 5-digit prismatic grasp under different digit configurations and external torques. Across digit configurations, older subjects showed larger internal normal (grip) and tangential (load-resisting) digit force components and larger internal moment of force. In contrast to earlier reports, safety margin values were not higher in the older subjects. The results show that the increased grip force in older persons is a specific example of a more general age-related problem reflected in the generation of large internal force vectors in prehensile tasks. It is possible that the higher internal forces increase the apparent stiffness of the hand+handle system and, hence, contribute to its stability. This strategy, however, may be maladaptive, energetically wasteful, and inefficient in ensuring safety of hand-held objects.
Collapse
Affiliation(s)
- Stanislaw Solnik
- a Department of Kinesiology , The Pennsylvania State University , University Park
| | | | | |
Collapse
|
18
|
Greve C, Zijlstra W, Hortobágyi T, Bongers RM. Not all is lost: old adults retain flexibility in motor behaviour during sit-to-stand. PLoS One 2013; 8:e77760. [PMID: 24204952 PMCID: PMC3808394 DOI: 10.1371/journal.pone.0077760] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 09/04/2013] [Indexed: 12/27/2022] Open
Abstract
Sit-to-stand is a fundamental activity of daily living, which becomes increasingly difficult with advancing age. Due to severe loss of leg strength old adults are required to change the way they rise from a chair and maintain stability. Here we examine whether old compared to young adults differently prioritize task-important performance variables and whether there are age-related differences in the use of available motor flexibility. We applied the uncontrolled manifold analysis to decompose trial-to-trial variability in joint kinematics into variability that stabilizes and destabilizes task-important performance variables. Comparing the amount of variability stabilizing and destabilizing task-important variables enabled us to identify the variable of primary importance for the task. We measured maximal isometric voluntary force of three muscle groups in the right leg. Independent of age and muscle strength, old and young adults similarly prioritized stability of the ground reaction force vector during sit-to-stand. Old compared to young adults employed greater motor flexibility, stabilizing ground reaction forces during sit-to-sand. We concluded that freeing those degrees of freedom that stabilize task-important variables is a strategy used by the aging neuromuscular system to compensate for strength deficits.
Collapse
Affiliation(s)
- Christian Greve
- University of Groningen, University Medical Center Groningen, Center for Human Movement Science, Groningen, The Netherlands
| | - Wiebren Zijlstra
- Institute of Movement and Sports Gerontology, German Sport University, Cologne, Germany
| | - Tibor Hortobágyi
- University of Groningen, University Medical Center Groningen, Center for Human Movement Science, Groningen, The Netherlands
| | - Raoul M. Bongers
- University of Groningen, University Medical Center Groningen, Center for Human Movement Science, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
19
|
Effect of aging on inter-joint synergies during machine-paced assembly tasks. Exp Brain Res 2013; 231:249-56. [PMID: 23995629 DOI: 10.1007/s00221-013-3688-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 08/22/2013] [Indexed: 10/26/2022]
Abstract
In recent years, uncontrolled manifold (UCM) analysis has emerged as an important method to study variability of human movements. The current study investigated the upper extremity movements during typical assembly tasks using the framework of the UCM analysis. Younger and older participants performed machine-paced assembly tasks, while the kinematics of upper extremities were recorded using a motion tracking system. The upper extremity was modeled as a 7 degrees-of-freedom system. The variance of joint angles within the UCM space (V UCM) and the variance perpendicular to the UCM space (V ORT) were analyzed. The results indicated that V UCM were not significantly different for the older and younger groups. For the older group, V ORT was significantly less than the younger group and resulted in less total variance (V TOT) and a better synergy level (Z ΔV ). Therefore, the synergies of upper extremity movement may not be impaired for machine-paced tasks as people age. While current results showed a different effect of aging on the synergies of body movement compared with one previous study, they were in line with a recently proposed theory that for natural tasks, aging people did not have impairment in the ability to organize upper extremity movement into synergies.
Collapse
|
20
|
Park J, Jo HJ, Lewis MM, Huang X, Latash ML. Effects of Parkinson's disease on optimization and structure of variance in multi-finger tasks. Exp Brain Res 2013; 231:51-63. [PMID: 23942616 DOI: 10.1007/s00221-013-3665-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 07/29/2013] [Indexed: 10/26/2022]
Abstract
We explored the role of the basal ganglia in two components of multi-finger synergies by testing a group of patients with early-stage Parkinson's disease and a group of healthy controls. Synergies were defined as co-varied adjustments of commands to individual fingers that reduced variance of the total force and moment of force. The framework of the uncontrolled manifold hypothesis was used to quantify such co-variation patterns, while average performance across repetitive trials (sharing patterns) was analyzed using the analytical inverse optimization (ANIO) approach. The subjects performed four-finger pressing tasks that involved the accurate production of combinations of the total force and total moment of force and also repetitive trials at two selected combinations of the total force and moment. The ANIO approach revealed significantly larger deviations of the experimental data planes from an optimal plane for the patients compared to the control subjects. The synergy indices computed for total force stabilization were significantly higher in the control subjects compared to the patients; this was not true for synergy indices computed for moment of force stabilization. The differences in the synergy indices were due to the larger amount of variance that affected total force in the patients, while the amount of variance that did not affect total force was comparable between the groups. We conclude that the basal ganglia play an important role in both components of synergies reflecting optimization of the sharing patterns and stability of performance with respect to functionally important variables.
Collapse
Affiliation(s)
- Jaebum Park
- Department of Kinesiology, Rec.Hall-268N, The Pennsylvania State University, University Park, PA, 16802, USA
| | | | | | | | | |
Collapse
|
21
|
Hsu WL, Chou LS, Woollacott M. Age-related changes in joint coordination during balance recovery. AGE (DORDRECHT, NETHERLANDS) 2013; 35:1299-309. [PMID: 22618298 PMCID: PMC3705105 DOI: 10.1007/s11357-012-9422-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Accepted: 04/30/2012] [Indexed: 05/20/2023]
Abstract
Falls represent a significant health risk in the elderly and often result in injuries that require medical attention. Reduced ability to control motion of the whole-body center of mass (COM) has been shown to identify elderly people at risk of falling. To explore effective preventive strategies and interventions, we studied adult age-related differences in multijoint coordination to control the COM during balance recovery. We used the uncontrolled manifold (UCM) analysis, which can decompose movement variability of joints into good movement variability (motor equivalent) and bad movement variability (nonmotor equivalent). The good variability does not affect the COM position, while the bad variability does. Twenty-nine subjects, including 16 healthy young (26.1 ± 4.5 year) and 13 older (74.6 ± 5.6 year) adults without systematic disease, neurological disease, or a severe degenerative condition stood on a flat platform, and received an unexpected backward translation. The older adults had similar amounts of joint movement as the young adults during balance recovery except for the thoracic-lumbar joint. However, the UCM analysis showed that the older adults changed their joint coordination pattern to control the COM and had a lower motor equivalent index with increased nonmotor equivalent variability (bad variability). We conclude that normal aging adults lose the compensatory strategy of flexibly controlling multiple joints when stabilizing the COM after receiving a balance perturbation.
Collapse
Affiliation(s)
- Wei-Li Hsu
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | | | | |
Collapse
|
22
|
Martin JR, Terekhov AV, Latash ML, Zatsiorsky VM. Optimization and variability of motor behavior in multifinger tasks: what variables does the brain use? J Mot Behav 2013; 45:289-305. [PMID: 23742067 PMCID: PMC4064684 DOI: 10.1080/00222895.2013.792234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The neural control of movement has been described using different sets of elemental variables. Two possible sets of elemental variables have been suggested for finger pressing tasks: the forces of individual fingers and the finger commands (also called finger modes or central commands). The authors analyzed which of the 2 sets of the elemental variables is more likely used in the optimization of the finger force sharing and which set is used for the stabilization of performance. They used two recently developed techniques-the analytical inverse optimization (ANIO) and the uncontrolled manifold (UCM) analysis-to evaluate each set of elemental variables with respect to both aspects of performance. The results of the UCM analysis favored the finger commands as the elemental variables used for performance stabilization, while ANIO worked equally well on both sets of elemental variables. A simple scheme is suggested as to how the CNS could optimize a cost function dependent on the finger forces, but for the sake of facilitation of the feed forward control it substitutes the original cost function by a cost function, which is convenient to optimize in the space of finger commands.
Collapse
Affiliation(s)
- Joel R. Martin
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Alexander V. Terekhov
- Institut des Systèmes Intelligents et de Robotique, Université Pierre et Marie Curie, Paris 75005, France
| | - Mark L. Latash
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Vladimir M. Zatsiorsky
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
23
|
End-state comfort and joint configuration variance during reaching. Exp Brain Res 2013; 225:431-42. [PMID: 23288326 DOI: 10.1007/s00221-012-3383-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 12/14/2012] [Indexed: 10/27/2022]
Abstract
This study joined two approaches to motor control. The first approach comes from cognitive psychology and is based on the idea that goal postures and movements are chosen to satisfy task-specific constraints. The second approach comes from the principle of motor abundance and is based on the idea that control of apparently redundant systems is associated with the creation of multi-element synergies stabilizing important performance variables. The first approach has been tested by relying on psychophysical ratings of comfort. The second approach has been tested by estimating variance along different directions in the space of elemental variables such as joint postures. The two approaches were joined here. Standing subjects performed series of movements in which they brought a hand-held pointer to each of four targets oriented within a frontal plane, close to or far from the body. The subjects were asked to rate the comfort of the final postures, and the variance of their joint configurations during the steady state following pointing was quantified with respect to pointer endpoint position and pointer orientation. The subjects showed consistent patterns of comfort ratings among the targets, and all movements were characterized by multi-joint synergies stabilizing both pointer endpoint position and orientation. Contrary to what was expected, less comfortable postures had higher joint configuration variance than did more comfortable postures without major changes in the synergy indices. Multi-joint synergies stabilized the pointer position and orientation similarly across a range of comfortable/uncomfortable postures. The results are interpreted in terms conducive to the two theoretical frameworks underlying this work, one focusing on comfort ratings reflecting mean postures adopted for different targets and the other focusing on indices of joint configuration variance.
Collapse
|
24
|
Abstract
A hypothesis was proposed that the central nervous system controls force production by the fingers through hypothetical neural commands. The neural commands are scaled between values of 0 to 1, indicating no intentional force production or maximal voluntary contraction (MVC) force production, respectively. A matrix of interfinger connections transforms neural commands into finger forces. Two methods have been proposed to compute the interfinger connection matrix. The first method uses only single finger MVC trials and multiplies the interfinger connection matrix by a gain factor. The second method uses a neural network model based on experimental data. The performance of the two methods was compared on the MVC data and on a data set of submaximal forces, collected over a range of total forces and moments of force. The methods were compared in terms of (1) ability to predict finger forces, (2) accuracy of neural command reconstruction, and (3) preserved planarity of force data for submaximal force production task. Both methods did a reasonable job of predicting the total force in multifinger MVC trials; however, the neural network model performed better in regards to all other criteria. Overall, the results indicate that for modeling multifinger interaction the neural network method is preferable.
Collapse
|
25
|
Park J, Lewis MM, Huang X, Latash ML. Effects of olivo-ponto-cerebellar atrophy (OPCA) on finger interaction and coordination. Clin Neurophysiol 2012. [PMID: 23182835 DOI: 10.1016/j.clinph.2012.10.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES We investigated changes in finger interaction and coordination in patients with olivo-ponto-cerebellar atrophy (OPCA) using the recently developed approach to motor synergies based on the principle of motor abundance. METHODS OPCA patients and control subjects performed sets of maximal and submaximal force production tasks by the fingers of each of the hands. Indices of multi-finger synergies were quantified within the framework of the uncontrolled manifold hypothesis. RESULTS The patients showed lower maximal forces, higher indices of finger interdependence (enslaving), and lower indices of multi-finger synergies stabilizing total force in four-finger tasks. In addition, the patients showed an impaired ability to adjust synergies in preparation to a quick action (small and delayed anticipatory synergy adjustments). The synergy indices showed significant correlations with the clinical scores (both UPDRS total motor scores and ataxia related sub-scores). The observed changes in the indices of finger interaction and coordination were qualitatively similar to those reported earlier for patients with Parkinson's disease; however, the magnitude of the changes was much higher in the OPCA group. CONCLUSIONS These findings fit the hypotheses on the role of the cerebellum in assembling motor synergies and in the feed-forward control of action. They suggest that the synergy index measured in artificial, constrained laboratory tasks may be predictive of more general changes in motor behavior. SIGNIFICANCE The results suggest that studies of multi-digit synergies may be particularly sensitive to subcortical disorders and may provide a much-needed tool for quantitative assessment of impaired coordination in such patients.
Collapse
Affiliation(s)
- Jaebum Park
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
26
|
Forces and moments generated by the human arm: variability and control. Exp Brain Res 2012; 223:159-75. [PMID: 23080084 DOI: 10.1007/s00221-012-3235-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 07/16/2012] [Indexed: 12/25/2022]
Abstract
This is an exploratory study of the accurate endpoint force vector production by the human arm in isometric conditions. We formulated three common-sense hypotheses and falsified them in the experiment. The subjects (n = 10) exerted static forces on the handle in eight directions in a horizontal plane for 25 s. The forces were of 4 magnitude levels (10, 20, 30 and 40 % of individual maximal voluntary contractions). The torsion moment on the handle (grasp moment) was not specified in the instruction. The two force components and the grasp moment were recorded, and the shoulder, elbow, and wrist joint torques were computed. The following main facts were observed: (a) While the grasp moment was not prescribed by the instruction, it was always produced. The moment magnitude and direction depended on the instructed force magnitude and direction. (b) The within-trial angular variability of the exerted force vector (angular precision) did not depend on the target force magnitude (a small negative correlation was observed). (c) Across the target force directions, the variability of the exerted force magnitude and directional variability exhibited opposite trends: In the directions where the variability of force magnitude was maximal, the directional variability was minimal and vice versa. (d) The time profiles of joint torques in the trials were always positively correlated, even for the force directions where flexion torque was produced at one joint and extension torque was produced at the other joint. (e) The correlations between the grasp moment and the wrist torque were negative across the tasks and positive within the individual trials. (f) In static serial kinematic chains, the pattern of the joint torques distribution could not be explained by an optimization cost function additive with respect to the torques. Plans for several future experiments have been suggested.
Collapse
|
27
|
Parikh PJ, Cole KJ. Handling objects in old age: forces and moments acting on the object. J Appl Physiol (1985) 2012; 112:1095-104. [DOI: 10.1152/japplphysiol.01385.2011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We measured the external moments and digit-tip force directions acting on a freely moveable object while it was grasped and manipulated by old (OA) and young (YA) adults. Participants performed a grasp and lift task and a precision orientation (key-slot) task with a precision (thumb-finger) grip. During the grasp-lift task the OA group misaligned their thumb and finger contacts and produced greater grip force, greater external moments on the object around its roll axis, and oriented force vectors differently compared with the YA group. During the key-slot task, the OA group was more variable in digit-tip force directions and performed the key-slot task more slowly. With practice the OA group aligned their digits, reduced their grip force, and minimized external moments on the object, clearly demonstrating that the nervous system monitored and actively manipulated one or more variables related to object tilt. This was true even for the grip-lift task, a task for which no instructions regarding object orientation were given and which could tolerate modest amounts of object tilt without interfering with task goals. Although the OA group performed the key-slot task faster with experience, they remained slower than the YA group. We conclude that with old age comes a reduced ability to control the forces and moments applied to objects during precision grasp and manipulation. This may contribute to the ubiquitous slowing and deteriorating manual dexterity in healthy aging.
Collapse
Affiliation(s)
- Pranav J. Parikh
- Motor Control Laboratories, Department of Health and Human Physiology, University of Iowa, Iowa
| | - Kelly J. Cole
- Motor Control Laboratories, Department of Health and Human Physiology, University of Iowa, Iowa
| |
Collapse
|
28
|
Niu X, Latash ML, Zatsiorsky VM. Reproducibility and variability of the cost functions reconstructed from experimental recordings in multifinger prehension. J Mot Behav 2012; 44:69-85. [PMID: 22364441 DOI: 10.1080/00222895.2011.650735] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The study examines whether the cost functions reconstructed from experimental recordings are reproducible over time. Participants repeated the trials on three days. By following Analytical Inverse Optimization procedures, the cost functions of finger forces were reconstructed for each day. The cost functions were found to be reproducible over time: application of a cost function C(i) to the data of Day j (i≠j) resulted in smaller deviations from the experimental observations than using other commonly used cost functions. Other findings are: (a) the 2nd order coefficients of the cost function showed negative linear relations with finger force magnitudes; (b) the finger forces were distributed on a 2-dimensional plane in the 4-dimensional finger force space for all subjects and all testing sessions; (c) the data agreed well with the principle of superposition, i.e. the action of object prehension can be decoupled into the control of rotational equilibrium and slipping prevention.
Collapse
Affiliation(s)
- Xun Niu
- Department of Kinesiology, The Pennsylvania State University, University Park, USA.
| | | | | |
Collapse
|
29
|
|
30
|
Latash ML. The bliss (not the problem) of motor abundance (not redundancy). Exp Brain Res 2012; 217:1-5. [PMID: 22246105 DOI: 10.1007/s00221-012-3000-4] [Citation(s) in RCA: 383] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 01/02/2012] [Indexed: 11/26/2022]
Abstract
Motor control is an area of natural science exploring how the nervous system interacts with other body parts and the environment to produce purposeful, coordinated actions. A central problem of motor control-the problem of motor redundancy-was formulated by Nikolai Bernstein as the problem of elimination of redundant degrees-of-freedom. Traditionally, this problem has been addressed using optimization methods based on a variety of cost functions. This review draws attention to a body of recent findings suggesting that the problem has been formulated incorrectly. An alternative view has been suggested as the principle of abundance, which considers the apparently redundant degrees-of-freedom as useful and even vital for many aspects of motor behavior. Over the past 10 years, dozens of publications have provided support for this view based on the ideas of synergic control, computational apparatus of the uncontrolled manifold hypothesis, and the equilibrium-point (referent configuration) hypothesis. In particular, large amounts of "good variance"-variance in the space of elements that has no effect on the overall performance-have been documented across a variety of natural actions. "Good variance" helps an abundant system to deal with secondary tasks and unexpected perturbations; its amount shows adaptive modulation across a variety of conditions. These data support the view that there is no problem of motor redundancy; there is bliss of motor abundance.
Collapse
Affiliation(s)
- Mark L Latash
- Department of Kinesiology, The Pennsylvania State University, Rec.Hall-267, University Park, PA 16802, USA.
| |
Collapse
|
31
|
Park J, Singh T, Zatsiorsky VM, Latash ML. Optimality versus variability: effect of fatigue in multi-finger redundant tasks. Exp Brain Res 2011; 216:591-607. [PMID: 22130781 DOI: 10.1007/s00221-011-2963-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 11/18/2011] [Indexed: 11/29/2022]
Abstract
We used two methods to address two aspects of multi-finger synergies and their changes after fatigue of the index finger. Analytical inverse optimization (ANIO) was used to identify cost functions and corresponding spaces of optimal solutions over a broad range of task parameters. Analysis within the uncontrolled manifold (UCM) hypothesis was used to quantify co-variation of finger forces across repetitive trials that helped reduce variability of (stabilized) performance variables produced by all the fingers together. Subjects produced steady-state levels of total force and moment of force simultaneously as accurately as possible by pressing with the four fingers of the right hand. Both before and during fatigue, the subjects performed single trials for many force-moment combinations covering a broad range; the data were used for the ANIO analysis. Multiple trials were performed at two force-moment combinations; these data were used for analysis within the UCM hypothesis. Fatigue was induced by 1-min maximal voluntary contraction exercise by the index finger. Principal component (PC) analysis showed that the first two PCs explained over 90% of the total variance both before and during fatigue. Hence, experimental observations formed a plane in the four-dimensional finger force space both before and during fatigue conditions. Based on this finding, quadratic cost functions with linear terms were estimated from the experimental data. The dihedral angle between the plane of optimal solutions and the plane of experimental observations (D (ANGLE)) was very small (a few degrees); it increased during fatigue. There was an increase in fatigue of the coefficient at the quadratic term for the index finger force balanced by a drop in the coefficients for the ring and middle fingers. Within each finger pair (index-middle and ring-little), the contribution of the "central" fingers to moment production increased during fatigue. An index of antagonist moment production dropped with fatigue. Fatigue led to higher co-variation indices during pronation tasks (index finger is an agonist) but opposite effects during supination tasks. The results suggest that adaptive changes in co-variation indices that help stabilize performance may depend on the role of the fatigued element, agonist or antagonist.
Collapse
Affiliation(s)
- Jaebum Park
- Department of Kinesiology, Rec.Hall-39, The Pennsylvania State University, University Park, PA 16802, USA,
| | | | | | | |
Collapse
|
32
|
Reconstruction of the unknown optimization cost functions from experimental recordings during static multi-finger prehension. Motor Control 2011; 16:195-228. [PMID: 22104742 DOI: 10.1123/mcj.16.2.195] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The goal of the research is to reconstruct the unknown cost (objective) function(s) presumably used by the neural controller for sharing the total force among individual fingers in multifinger prehension. The cost function was determined from experimental data by applying the recently developed Analytical Inverse Optimization (ANIO) method (Terekhov et al. 2010). The core of the ANIO method is the Theorem of Uniqueness that specifies conditions for unique (with some restrictions) estimation of the objective functions. In the experiment, subjects (n = 8) grasped an instrumented handle and maintained it at rest in the air with various external torques, loads, and target grasping forces applied to the object. The experimental data recorded from 80 trials showed a tendency to lie on a 2-dimensional hyperplane in the 4-dimensional finger-force space. Because the constraints in each trial were different, such a propensity is a manifestation of a neural mechanism (not the task mechanics). In agreement with the Lagrange principle for the inverse optimization, the plane of experimental observations was close to the plane resulting from the direct optimization. The latter plane was determined using the ANIO method. The unknown cost function was reconstructed successfully for each performer, as well as for the group data. The cost functions were found to be quadratic with nonzero linear terms. The cost functions obtained with the ANIO method yielded more accurate results than other optimization methods. The ANIO method has an evident potential for addressing the problem of optimization in motor control.
Collapse
|
33
|
Gorniak SL, Zatsiorsky VM, Latash ML. Manipulation of a fragile object by elderly individuals. Exp Brain Res 2011; 212:505-16. [PMID: 21667292 DOI: 10.1007/s00221-011-2755-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 05/30/2011] [Indexed: 01/20/2023]
Abstract
We investigated strategies of healthy elderly participants (74-84 years old) during prehension and transport of an object with varying degrees of fragility. Fragility was specified as the maximal normal force that the object could withstand without collapsing. Specifically, kinetic and kinematic variables as well as and force covariation indices were quantified and compared to those shown by young healthy persons (19-28 years old). We tested three hypotheses related to age-related changes in two safety margins (slip safety margin and crush safety margin) and indices of force covariation. Compared to young controls, elderly individuals exhibited a decrease in object acceleration and an increase in movement time, an increase in grip force production, a decrease in the correlation between grip and load forces, an overall decrease in indices of multi-digit synergies, and lower safety margin indices computed with respect to both dropping and crushing the object. Elderly participants preferred to be at a relatively lower risk of crushing the object even if this led to a higher risk of dropping it. Both groups showed an increase in the index of synergy stabilizing total normal force produced by the four fingers with increased fragility of the object. Age-related changes are viewed as a direct result of physiological changes due to aging, not adaptation to object fragility. Such changes in overall characteristics of prehension likely reflect diminished synergic control by the central nervous system of finger forces with aging. The findings corroborate an earlier hypothesis on an age-related shift from synergic to element-based control.
Collapse
Affiliation(s)
- Stacey L Gorniak
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | |
Collapse
|