1
|
Krasovskaya S, Kristjánsson Á, MacInnes WJ. Microsaccade rate activity during the preparation of pro- and antisaccades. Atten Percept Psychophys 2023; 85:2257-2276. [PMID: 37258896 DOI: 10.3758/s13414-023-02731-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2023] [Indexed: 06/02/2023]
Abstract
Microsaccades belong to the category of fixational micromovements and may be crucial for image stability on the retina. Eye movement paradigms typically require fixational control, but this does not eliminate all oculomotor activity. The antisaccade task requires a planned eye movement in the direction opposite of an onset, allowing separation of planning and execution. We build on previous studies of microsaccades in the antisaccade task using a combination of fixed and mixed pro- and antisaccade blocks. We hypothesized that microsaccade rates may be reduced prior to the execution of antisaccades as compared with regular saccades (prosaccades). In two experiments, we measured microsaccades in four conditions across three trial blocks: one block each of fixed prosaccade and antisaccade trials, and a mixed block where both saccade types were randomized. We anticipated that microsaccade rates would be higher prior to antisaccades than prosaccades due to the need to preemptively suppress reflexive saccades during antisaccade generation. In Experiment 1, with monocular eye tracking, there was an interaction between the effects of saccade and block type on microsaccade rates, suggesting lower rates on antisaccade trials, but only within mixed blocks. In Experiment 2, eye tracking was binocular, revealing suppressed microsaccade rates on antisaccade trials. A cluster permutation analysis of the microsaccade rate over the course of a trial did not reveal any particular critical time for this difference in microsaccade rates. Our findings suggest that microsaccade rates reflect the degree of suppression of the oculomotor system during the antisaccade task.
Collapse
Affiliation(s)
- Sofia Krasovskaya
- Faculty of Psychology, University of Iceland, Reykjavik, Iceland.
- Icelandic Vision Lab, Faculty of Psychology, University of Iceland, Nýi Garður, Sæmundargata 12, 102, Reykjavik, Iceland.
- Vision Modelling Lab, HSE University, Moscow, Russia.
| | - Árni Kristjánsson
- Faculty of Psychology, University of Iceland, Reykjavik, Iceland
- Icelandic Vision Lab, Faculty of Psychology, University of Iceland, Nýi Garður, Sæmundargata 12, 102, Reykjavik, Iceland
| | - W Joseph MacInnes
- Vision Modelling Lab, HSE University, Moscow, Russia
- Department of Computer Science, Swansea University, Swansea, UK
| |
Collapse
|
2
|
Morava A, Tari B, Ahn J, Shirzad M, Heath M, Prapavessis H. Acute stress imparts a transient benefit to task-switching that is not modulated following a single bout of exercise. Front Psychol 2023; 14:1157644. [PMID: 37533726 PMCID: PMC10391836 DOI: 10.3389/fpsyg.2023.1157644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/29/2023] [Indexed: 08/04/2023] Open
Abstract
Introduction Cognitive flexibility represents a core component of executive function that promotes the ability to efficiently alternate-or "switch"-between different tasks. Literature suggests that acute stress negatively impacts cognitive flexibility, whereas a single bout of aerobic exercise supports a postexercise improvement in cognitive flexibility. Here, we examined whether a single bout of aerobic exercise attenuates a stress-induced decrement in task-switching. Materials and Methods Forty participants (age range = 19-30) completed the Trier Social Stress Test (TSST) and were randomized into separate Exercise or Rest groups entailing 20-min sessions of heavy intensity exercise (80% of heart rate maximum via cycle ergometer) or rest, respectively. Stress induction was confirmed via state anxiety and heart rate. Task-switching was assessed prior to the TSST (i.e., pre-TSST), following the TSST (i.e., post-TSST), and following Exercise and Rest interventions (i.e., post-intervention) via pro- (i.e., saccade to veridical target location) and antisaccades (i.e., saccade mirror-symmetrical to target location) arranged in an AABB task-switching paradigm. The underlying principle of the AABB paradigm suggests that when prosaccades are preceded by antisaccades (i.e., task-switch trials), the reaction times are longer compared to their task-repeat counterparts (i.e., unidirectional prosaccade switch-cost). Results As expected, the pre-TSST assessment yielded a prosaccade switch cost. Notably, post-TSST physiological measures indicated a reliable stress response and at this assessment a null prosaccade switch-cost was observed. In turn, post-intervention assessments revealed a switch-cost independent of Exercise and Rest groups. Conclusion Accordingly, the immediate effects of acute stress supported improved task-switching in young adults; however, these benefits were not modulated by a single bout of aerobic exercise.
Collapse
Affiliation(s)
- Anisa Morava
- Faculty of Health Sciences, School of Kinesiology, University of Western Ontario, London, ON, Canada
| | - Benjamin Tari
- Faculty of Health Sciences, School of Kinesiology, University of Western Ontario, London, ON, Canada
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Joshua Ahn
- Faculty of Health Sciences, School of Kinesiology, University of Western Ontario, London, ON, Canada
| | - Mustafa Shirzad
- Faculty of Health Sciences, School of Kinesiology, University of Western Ontario, London, ON, Canada
| | - Matthew Heath
- Faculty of Health Sciences, School of Kinesiology, University of Western Ontario, London, ON, Canada
- Canadian Centre for Activity and Aging, University of Western Ontario, London, ON, Canada
- Graduate Program in Neuroscience, University of Western Ontario, London, ON, Canada
| | - Harry Prapavessis
- Faculty of Health Sciences, School of Kinesiology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
3
|
Shukla D, Heath M. A Single Bout of Exercise Provides a Persistent Benefit to Cognitive Flexibility. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2022; 93:516-527. [PMID: 34663200 DOI: 10.1080/02701367.2021.1873902] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/06/2021] [Indexed: 06/13/2023]
Abstract
Purpose: A single bout of exercise enhances activity within the cortical networks that support executive function. It is, however, unclear whether exercise improves each core component of executive function and for how long a putative benefit might persist. Method: In Experiment 1, participants completed 20-min of aerobic exercise (via cycle ergometer) and cognitive flexibility-a core component of executive function-was examined pre-exercise, and at immediate, 30- and 60-min post-exercise assessments. Experiment 2 entailed a non-exercise control (i.e., participants sat on the ergometer without exercising) involving the same timeline of cognitive flexibility assessment. Cognitive flexibility was measured via stimulus-driven (SD) and minimally delayed (MD) saccades arranged in an AABB paradigm. SD and MD saccades require a response at target onset and after target offset, respectively, with the latter requiring executive control. Work has shown that reaction times for a SD saccade preceded by a MD saccade are longer than when a SD saccade is preceded by its same task-type, whereas the converse switch does not influence performance (i.e., the unidirectional switch-cost). Results: Experiment 1 showed a unidirectional switch-cost at each assessment; however, the switch-cost magnitude was decreased at immediate and 30-min assessments compared to the pre- and 60-min assessments. In contrast, Experiment 2 did not elicit a change in switch-cost magnitude across the different assessments. Discussion/Conclusion: Thus, a single-bout of exercise benefitted the cognitive flexibility component of executive function in the immediate and 30-min post-exercise assessments.
Collapse
|
4
|
Tari B, Edgar C, Persaud P, Dalton C, Heath M. The unidirectional prosaccade switch-cost: no evidence for the passive dissipation of an oculomotor task-set inertia. Exp Brain Res 2022; 240:2061-2071. [PMID: 35727365 PMCID: PMC9211787 DOI: 10.1007/s00221-022-06394-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/28/2022] [Indexed: 11/30/2022]
Abstract
Cognitive flexibility is a core component of executive function and supports the ability to ‘switch’ between different tasks. Our group has examined the cost associated with switching between a prosaccade (i.e., a standard task requiring a saccade to veridical target location) and an antisaccade (i.e., a non-standard task requiring a saccade mirror-symmetrical to veridical target) in predictable (i.e., AABB) and unpredictable (e.g., AABAB…) switching paradigms. Results have shown that reaction times (RTs) for a prosaccade preceded by an antisaccade (i.e., task-switch trial) are longer than when preceded by its same task-type (i.e., task-repeat trial), whereas RTs for antisaccade task-switch and task-repeat trials do not differ. The asymmetrical switch-cost has been attributed to an antisaccade task-set inertia that proactively delays a subsequent prosaccade (i.e., the unidirectional prosaccade switch-cost). A salient question arising from previous work is whether the antisaccade task-set inertia passively dissipates or persistently influences prosaccade RTs. Accordingly, participants completed separate AABB (i.e., A = prosaccade, B = antisaccade) task-switching conditions wherein the preparation interval for each trial was ‘short’ (1000–2000 ms; i.e., the timeframe used in previous work), ‘medium’ (3000–4000 ms) and ‘long’ (5000–6000 ms). Results demonstrated a reliable prosaccade switch-cost for each condition (ps < 0.02) and two one-sided test statistics indicated that switch cost magnitudes were within an equivalence boundary (ps < 0.05). Hence, null and equivalence tests demonstrate that an antisaccade task-set inertia does not passively dissipate and represents a temporally persistent feature of oculomotor control.
Collapse
Affiliation(s)
- Benjamin Tari
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Chloe Edgar
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Priyanka Persaud
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Connor Dalton
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Matthew Heath
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada. .,Canadian Centre for Activity and Aging, The University of Western Ontario, 1201 Western Rd, London, ON, N6G 1H1, Canada. .,Graduate Program in Neuroscience, The University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada.
| |
Collapse
|
5
|
Aubin L, Mostafaoui G, Schmidt R, Serré H, Marin L. Effects of unintentional coordination on attentional load. Hum Mov Sci 2021; 80:102880. [PMID: 34583141 DOI: 10.1016/j.humov.2021.102880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/02/2021] [Accepted: 09/17/2021] [Indexed: 10/20/2022]
Abstract
The goal of this study was to evaluate the impact of unintentional (spontaneous) coordination on high attentional visual load. More precisely, we wondered whether such coordination could free up some attentional resources and help improve performance in other more demanding attentional tasks. An experiment was performed in which participant attentional allocation was challenged by performing three tasks simultaneously while simultaneously being induced to unintentional entrain to an environmental rhythm. The first task was an interception task associated with a Stroop test to increase their attentional load. The second task was a reaction time test to alarms in different modalities (auditory, visual and bimodal) which was used to assess participant attentional load. The third task was a motor task in which participants were asked to swing their legs at a preferred frequency. The interface background brightness intensity was either synchronized in real time using a bidirectional coupling to participant leg movement or the background brightness was not changing at all. Our results on the reaction time task demonstrated that participants exhibited better reaction times for alarms in the bimodal condition than in the auditory condition and lastly for the visual condition. Also, participants exhibited a lower reaction time to alarms when the background brightness was synchronizing with their leg regardless the alarm modality. Overall, our study suggests a beneficial effect of unintentional environmental coordination on attentional resource allocation and highlights the importance of bidirectionality in interaction.
Collapse
Affiliation(s)
- Lise Aubin
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier 34090, France; ETIS UMR8051, CY University, ENSEA, CNRS, Pontoise 95300, France.
| | | | | | - Hélène Serré
- GIPSA-lab, Université Grenoble Alpes, Grenoble 38185, France.
| | - Ludovic Marin
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier 34090, France.
| |
Collapse
|
6
|
Shukla D, Al-Shamil Z, Belfry G, Heath M. A single bout of moderate intensity exercise improves cognitive flexibility: evidence from task-switching. Exp Brain Res 2020; 238:2333-2346. [PMID: 32743687 DOI: 10.1007/s00221-020-05885-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 07/16/2020] [Indexed: 12/12/2022]
Abstract
Executive function entails the core components of response inhibition, working memory and cognitive flexibility. An accumulating literature has shown that a single bout of exercise improves the response inhibition and working memory components of executive function; however, limited work has examined a putative exercise-related improvement to cognitive flexibility. To address this limitation, Experiment 1 entailed a 20-min session of moderate intensity aerobic exercise (via cycle ergometer), and pre- and post-exercise cognitive flexibility was examined via a task-switching paradigm involving alternating pro- and antisaccades (AABB: A = prosaccade, B = antisaccade). In Experiment 2, participants sat on the cycle ergometer without exercising (i.e., rest break) and the same AABB paradigm was examined pre- and post-break. We used an AABB pro- and antisaccade paradigm because previous work has shown that a prosaccade preceded by an antisaccade exhibits a reliable-and large magnitude-increase in reaction time, whereas the converse switch does not (i.e., the unidirectional prosaccade switch-cost). Experiment 1 showed a unidirectional prosaccade switch-cost pre-exercise (p = .012)-but not post-exercise (p = .30), and a two one-sided t test indicated that the latter comparison was within an equivalence boundary (p < .01). In contrast, Experiment 2 revealed a unidirectional prosaccade switch-cost at pre- and post-break assessments (ps < .01). Accordingly, our results indicate that a single bout of exercise improves cognitive flexibility and provides convergent evidence that exercise improves global components of executive function.
Collapse
Affiliation(s)
- Diksha Shukla
- School of Kinesiology, University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Zain Al-Shamil
- School of Kinesiology, University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Glen Belfry
- School of Kinesiology, University of Western Ontario, London, ON, N6A 3K7, Canada
- Canadian Centre for Activity and Aging, Faculty of Health Sciences, University of Western Ontario, London, ON, Canada
| | - Matthew Heath
- School of Kinesiology, University of Western Ontario, London, ON, N6A 3K7, Canada.
- Canadian Centre for Activity and Aging, Faculty of Health Sciences, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
7
|
Ayala N, Heath M. Executive Dysfunction after a Sport-Related Concussion Is Independent of Task-Based Symptom Burden. J Neurotrauma 2020; 37:2558-2568. [PMID: 32438897 DOI: 10.1089/neu.2019.6865] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A sport-related concussion (SRC) results in short- and long-term deficits in oculomotor control; however, it is unclear whether this change reflects executive dysfunction and/or a performance decrement caused by an increase in task-based symptom burden. Here, individuals with a SRC - and age- and sex-matched controls - completed an antisaccade task (i.e., saccade mirror-symmetrical to a target) during the early (initial assessment ≤12 days) and later (follow-up assessment <30 days) stages of recovery. Antisaccades were used because they require top-down executive control and exhibit performance decrements following an SRC. Reaction time (RT) and directional errors were included with pupillometry, because pupil size in the antisaccade task has been shown to provide a neural proxy for executive control. In addition, the Sport-Concussion Assessment Tool (SCAT-5) symptom checklist was completed prior to and after each oculomotor assessment to identify a possible task-based increase in symptomology. The SRC group yielded longer initial assessment RTs, more directional errors, and larger task-evoked pupil dilations (TEPD) than the control group. At the follow-up assessment, RTs for the SRC and control group did not reliably differ; however, the former demonstrated more directional errors and larger TEPDs. SCAT-5 symptom severity scores did not vary from the pre- to post-oculomotor evaluation for either initial or follow-up assessments. Accordingly, an SRC imparts a persistent executive dysfunction to oculomotor planning independent of a task-based increase in symptom burden. These findings evince that antisaccades serve as an effective tool to identify subtle executive deficits during the early and later stages of SRC recovery.
Collapse
Affiliation(s)
- Naila Ayala
- School of Kinesiology, University of Western Ontario, London, Ontario, Canada.,Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada
| | - Matthew Heath
- School of Kinesiology, University of Western Ontario, London, Ontario, Canada.,Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
8
|
Tari B, Heath M. Pro- and antisaccade task-switching: response suppression-and not vector inversion-contributes to a task-set inertia. Exp Brain Res 2019; 237:3475-3484. [PMID: 31741001 DOI: 10.1007/s00221-019-05686-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/07/2019] [Indexed: 11/25/2022]
Abstract
Alternating between different tasks represents an executive function essential to activities of daily living. In the oculomotor literature, reaction times (RT) for a 'standard' and stimulus-driven (SD) prosaccade (i.e., saccade to target at target onset) are increased when preceded by a 'non-standard' antisaccade (i.e., saccade mirror-symmetrical to target at target onset), whereas the converse switch does not elicit an RT cost. The prosaccade switch-cost has been attributed to lingering neural activity-or task-set inertia-related to the antisaccade executive demands of response suppression and vector inversion. It is, however, unclear whether response suppression and/or vector inversion contribute to the prosaccade switch-cost. Experiment 1 of the present work had participants alternate (i.e., AABB paradigm) between minimally delayed (MD) pro- and antisaccades. MD saccades require a response after target extinction and necessitate response suppression for both pro- and antisaccades-a paradigm providing a framework to determine whether vector inversion contributes to a task-set inertia. In Experiment 2, participants alternated between SD pro- and MD antisaccades-a paradigm designed to determine if a switch-cost is selectively imparted when a SD and standard response is preceded by a non-standard response. Experiment 1 showed that RTs for MD pro- and antisaccades were refractory to the preceding trial-type; that is, vector inversion did not engender a switch-cost. Experiment 2 indicated that RTs for SD prosaccades were increased when preceded by an MD antisaccade. Accordingly, response suppression engenders a task-set inertia but only for a subsequent stimulus-driven and standard response (i.e., SD prosaccade). Such a result is in line with the view that response suppression is a hallmark feature of executive function.
Collapse
Affiliation(s)
- Benjamin Tari
- School of Kinesiology, The University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Matthew Heath
- School of Kinesiology, The University of Western Ontario, London, ON, N6A 3K7, Canada.
| |
Collapse
|
9
|
Tari B, Fadel MA, Heath M. Response suppression produces a switch-cost for spatially compatible saccades. Exp Brain Res 2019; 237:1195-1203. [PMID: 30809706 DOI: 10.1007/s00221-019-05497-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/19/2019] [Indexed: 11/29/2022]
Abstract
Executive function supports the rapid alternation between tasks for online reconfiguration of attentional and motor goals. The oculomotor literature has found that a prosaccade (i.e., saccade to veridical target location) preceded by an antisaccade (i.e., saccade mirror symmetrical to a target) elicits an increase in reaction time (RT), whereas the converse switch does not. This switch-cost has been attributed to the antisaccade task's requirement of inhibiting a prosaccade (i.e., response suppression) and transforming a target's coordinate (i.e., vector inversion)-executive processes thought to contribute to a task-set inertia that proactively interferes with the planning of a subsequent prosaccade. It is, however, unclear whether response suppression and vector inversion contribute to a task-set inertia or whether the phenomenon relates to a unitary component (e.g., response suppression). Here, the same stimulus-driven (SD) prosaccades (i.e., respond at target onset) as used in previous work were used with minimally delayed (MD) prosaccades (i.e., respond at target offset) and arranged in an AABB paradigm (i.e., A = SD prosaccade, B = MD prosaccade). MD prosaccades provide the same response suppression as antisaccades without the need for vector inversion. RTs for SD task-switch trials were longer and more variable than their task-repeat counterparts, whereas values for MD task-switch and task-repeat trials did not reliably differ. Moreover, SD task-repeat and task-switch movement times and amplitudes did not vary and thus demonstrate that a switch-cost is unrelated to a speed accuracy trade-off. Accordingly, results suggest the executive demands of response suppression is sufficient to engender the persistent activation of a non-standard task-set that selectively delays the planning of a subsequent SD prosaccade.
Collapse
Affiliation(s)
- Benjamin Tari
- School of Kinesiology, The University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Mohammed A Fadel
- School of Kinesiology, The University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Matthew Heath
- School of Kinesiology, The University of Western Ontario, London, ON, N6A 3K7, Canada.
| |
Collapse
|
10
|
Clough M, Foletta P, Frohman AN, Sears D, Ternes A, White OB, Fielding J. Multiple sclerosis: Executive dysfunction, task switching and the role of attention. Mult Scler J Exp Transl Clin 2018; 4:2055217318771781. [PMID: 29707228 PMCID: PMC5912274 DOI: 10.1177/2055217318771781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/27/2018] [Accepted: 03/20/2018] [Indexed: 11/25/2022] Open
Abstract
Background It has been suggested that switching ability might not be affected in multiple sclerosis (MS) as previously thought; however, whether this is true under more ‘real-world’ conditions when asymmetry in task difficulty is present has not been ascertained. Objective The objective of this paper is to examine the impact of task difficulty asymmetry on task switching ability in MS. Method An ocular motor (OM) paradigm that interleaves the simple task of looking towards a target (prosaccade, PS) with the cognitively more difficult task of looking away from a target (antisaccade, PS) was used. Two switching conditions: (1) PS switch cost, switching to a simple task from a difficult task (PS switch), relative to performing two simple tasks concurrently (PS repeat); (2) AS switch cost, switching to a difficult task from a simple task (AS switch) relative to performing two difficult tasks concurrently (AS repeat). Forty-five relapsing–remitting MS patients and 30 control individuals were compared. Results Controls and patients produced a similar magnitude PS switch cost, suggesting that task difficulty asymmetry does not detrimentally impact MS patients when transitioning from a more difficult task to a simpler task. However, MS patients alone found switching from the simpler PS trial to the more difficult AS trial easier (shorter latency and reduced error) than performing two AS trials consecutively (AS switch benefit). Further, MS patients performed significantly more errors than controls when required to repeat the same trial consecutively. Conclusion MS patients appear to find the maintenance of task-relevant processes difficult not switching per se, with deficits exacerbated under increased attentional demands.
Collapse
Affiliation(s)
- M Clough
- Department of Neurosciences, Central Clinical School, Monash University, Alfred Hospital, Australia.,School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Australia
| | - P Foletta
- Department of Neurosciences, Central Clinical School, Monash University, Alfred Hospital, Australia.,School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Australia
| | - A N Frohman
- Departments of Neurology and Neurotherapeutics, University of Texas Southwestern School of Medicine, USA
| | - D Sears
- Departments of Neurology and Neurotherapeutics, University of Texas Southwestern School of Medicine, USA
| | - A Ternes
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Australia
| | - O B White
- Department of Neurosciences, Central Clinical School, Monash University, Alfred Hospital, Australia
| | - J Fielding
- Department of Neurosciences, Central Clinical School, Monash University, Alfred Hospital, Australia.,School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Australia
| |
Collapse
|
11
|
Chan JL, Koval MJ, Johnston K, Everling S. Neural correlates for task switching in the macaque superior colliculus. J Neurophysiol 2017; 118:2156-2170. [PMID: 28794192 DOI: 10.1152/jn.00139.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 07/25/2017] [Accepted: 07/25/2017] [Indexed: 11/22/2022] Open
Abstract
Successful task switching requires a network of brain areas to select, maintain, implement, and execute the appropriate task. Although frontoparietal brain areas are thought to play a critical role in task switching by selecting and encoding task rules and exerting top-down control, how brain areas closer to the execution of tasks participate in task switching is unclear. The superior colliculus (SC) integrates information from various brain areas to generate saccades and is likely influenced by task switching. Here, we investigated switch costs in nonhuman primates and their neural correlates in the activity of SC saccade-related neurons in monkeys performing cued, randomly interleaved pro- and anti-saccade trials. We predicted that behavioral switch costs would be associated with differential modulations of SC activity in trials on which the task was switched vs. repeated, with activity on the current trial resembling that associated with the task set of the previous trial when a switch occurred. We observed both error rate and reaction time switch costs and changes in the discharge rate and timing of activity in SC neurons between switch and repeat trials. These changes were present later in the task only after fixation on the cue stimuli but before saccade onset. These results further establish switch costs in macaque monkeys and suggest that SC activity is modulated by task-switching processes in a manner inconsistent with the concept of task set inertia.NEW & NOTEWORTHY Task-switching behavior and superior colliculus (SC) activity were investigated in nonhuman primates performing randomly interleaved pro- and anti-saccade tasks. Here, we report error rate and reaction time switch costs in macaque monkeys and associated differences in stimulus-related activity of saccade-related neurons in the SC. These results provide a neural correlate for task switching and suggest that the SC is modulated by task-switching processes and may reflect the completion of task set reconfiguration.
Collapse
Affiliation(s)
- Jason L Chan
- Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada
| | - Michael J Koval
- Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada
| | - Kevin Johnston
- Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada; and
| | - Stefan Everling
- Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada; .,Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada; and.,Robarts Research Institute, London, Ontario, Canada
| |
Collapse
|
12
|
Pierce JE, McDowell JE. Contextual effects on cognitive control and BOLD activation in single versus mixed saccade tasks. Brain Cogn 2017; 115:12-20. [PMID: 28371646 DOI: 10.1016/j.bandc.2017.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 03/06/2017] [Accepted: 03/14/2017] [Indexed: 10/19/2022]
Abstract
The context or trial history of a task influences response efficiency in mixed paradigms based on cognitive control demands for task set selection. In the current study, the impact of context on prosaccade and antisaccade trials in single and mixed tasks was investigated with BOLD fMRI. Prosaccades require a look towards a newly appearing target, while antisaccades require cognitive control for prepotent response inhibition and generation of a saccade to the opposite location. Results indicated slower prosaccade reaction times and more antisaccade errors for switched than repeated or single trials, and slower antisaccade reaction times for single than mixed trials. BOLD activation was greater for the mixed than the single context in frontal eye fields and precuneus, while switch trials had greater activation than repeat trials in posterior parietal and middle occipital cortex. Greater antisaccade activation was observed overall in saccade circuitry, although effects were evident primarily for the mixed task when considered separately. Finally, an interaction was observed in superior frontal cortex, precuneus, anterior cingulate, and thalamus with strong responses for antisaccade switch trials in the latter two regions. Altogether this response pattern demonstrated the sensitivity of cognitive control to changing task conditions, especially due to task switching costs. Such context-specific differences highlight the importance of trial history when assessing cognitive control.
Collapse
Affiliation(s)
- Jordan E Pierce
- Department of Psychology, University of Georgia, Athens, GA, United States
| | | |
Collapse
|
13
|
Zeligman L, Zivotofsky AZ. Back to basics: The effects of block vs. interleaved trial administration on pro- and anti-saccade performance. PLoS One 2017; 12:e0172485. [PMID: 28222173 PMCID: PMC5319747 DOI: 10.1371/journal.pone.0172485] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 02/06/2017] [Indexed: 12/14/2022] Open
Abstract
The pro and anti-saccade task (PAT) is a widely used tool in the study of overt and covert attention with promising potential role in neurocognitive and psychiatric assessment. However, specific PAT protocols can vary significantly between labs, potentially resulting in large variations in findings across studies. In light of recent calls towards a standardization of PAT the current study's objective was to systematically and purposely evaluate the effects of block vs. interleaved administration—a fundamental consideration—on PAT measures in a within subject design. Additionally, this study evaluated whether measures of a Posner-type cueing paradigm parallels measures of the PAT paradigm. As hypothesized, results indicate that PAT performance is highly susceptible to administration mode. Interleaved mode resulted in larger error rates not only for anti (blocks: M = 22%; interleaved: M = 42%) but also for pro-saccades (blocks: M = 5%; interleaved: M = 12%). This difference between block and interleaved administration was significantly larger in anti-saccades compared to pro-saccades and cannot be attributed to a 'speed/accuracy tradeoff'. Interleaved mode produced larger pro and anti-saccade differences in error rates while block administration produced larger latency differences. Results question the reflexive nature of pro-saccades, suggesting they are not purely reflexive. These results were further discussed and compared to previous studies that included within subject data of blocks and interleaved trials.
Collapse
Affiliation(s)
- Liran Zeligman
- Dept. of Psychology, Bar Ilan University, Ramat Gan, Israel
| | - Ari Z. Zivotofsky
- The Leslie and Susan Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
- * E-mail:
| |
Collapse
|
14
|
Brain structure and intragenic DNA methylation are correlated, and predict executive dysfunction in fragile X premutation females. Transl Psychiatry 2016; 6:e984. [PMID: 27959330 PMCID: PMC5290342 DOI: 10.1038/tp.2016.250] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 09/28/2016] [Indexed: 02/07/2023] Open
Abstract
DNA methylation of the Fragile X mental retardation 1 (FMR1) exon 1/intron 1 boundary has been associated with executive dysfunction in female carriers of a FMR1 premutation (PM: 55-199 CGG repeats), whereas neuroanatomical changes have been associated with executive dysfunction in PM males. To our knowledge, this study for the first time examined the inter-relationships between executive function, neuroanatomical structure and molecular measures (DNA methylation and FMR1 mRNA levels in blood) in PM and control (<44 CGG repeats) females. In the PM group, FMR1 intron 1 methylation was positively associated with executive function and cortical thickness in middle and superior frontal gyri, and left inferior parietal gyrus. By contrast, in the control group, FMR1 intron 1 methylation was negatively associated with cortical thickness of the left middle frontal gyrus and superior frontal gyri. No significant associations were revealed for either group between FMR1 mRNA and neuroanatomical structure or executive function. In the PM group, the lack of any significant association between FMR1 mRNA levels and phenotypic measures found in this study suggests that either FMR1 expression is not well conserved between tissues, or that FMR1 intron 1 methylation is linked to neuroanatomical and cognitive phenotype in PM females via a different mechanism.
Collapse
|
15
|
Shelton AL, Cornish K, Clough M, Gajamange S, Kolbe S, Fielding J. Disassociation between brain activation and executive function in fragile X premutation females. Hum Brain Mapp 2016; 38:1056-1067. [PMID: 27739609 DOI: 10.1002/hbm.23438] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 09/28/2016] [Accepted: 10/05/2016] [Indexed: 11/11/2022] Open
Abstract
Executive dysfunction has been demonstrated among premutation (PM) carriers (55-199 CGG repeats) of the Fragile X mental retardation 1 (FMR1) gene. Further, alterations to neural activation patterns have been reported during memory and comparison based functional magnetic resonance imaging (fMRI) tasks in these carriers. For the first time, the relationships between fMRI neural activation during an interleaved ocular motor prosaccade/antisaccade paradigm, and concurrent task performance (saccade measures of latency, accuracy and error rate) in PM females were examined. Although no differences were found in whole brain activation patterns, regions of interest (ROI) analyses revealed reduced activation in the right ventrolateral prefrontal cortex (VLPFC) during antisaccade trials for PM females. Further, a series of divergent and group specific relationships were found between ROI activation and saccade measures. Specifically, for control females, activation within the right VLPFC and supramarginal gyrus correlated negatively with antisaccade latencies, while for PM females, activation within these regions was found to negatively correlate with antisaccade accuracy and error rate (right VLPFC only). For control females, activation within frontal and supplementary eye fields and bilateral intraparietal sulci correlated with prosaccade latency and accuracy; however, no significant prosaccade correlations were found for PM females. This exploratory study extends previous reports of altered prefrontal neural engagement in PM carriers, and clearly demonstrates dissociation between control and PM females in the transformation of neural activation into overt measures of executive dysfunction. Hum Brain Mapp 38:1056-1067, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Annie L Shelton
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Melbourne, Victoria, Australia
| | - Kim Cornish
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Melbourne, Victoria, Australia
| | - Meaghan Clough
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Melbourne, Victoria, Australia
| | - Sanuji Gajamange
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| | - Scott Kolbe
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| | - Joanne Fielding
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
16
|
Nemanich ST, Earhart GM. Freezing of gait is associated with increased saccade latency and variability in Parkinson's disease. Clin Neurophysiol 2016; 127:2394-401. [PMID: 27178858 DOI: 10.1016/j.clinph.2016.03.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Freezing of gait (FOG) is a locomotor disturbance in Parkinson disease (PD) related to impaired motor automaticity. In this study, we investigated the impact of freezing on automaticity in the oculomotor system using an anti-saccade paradigm. METHODS Subjects with PD with (PD-FOG, n=13) and without (PD-NON, n=13) FOG, and healthy age-matched controls (CTRL, n=12) completed automatic pro-saccades and non-automatic anti-saccades. Primary outcomes were saccade latency, velocity, and gain. RESULTS PD-FOG (pro-saccade latency=271ms, anti-saccade latency=412ms) were slower to execute both types of saccades compared to PD-NON (253ms, 330ms) and CTRL (246ms, 327ms). Saccade velocity and gain variability was also increased in PD-FOG. CONCLUSIONS Saccade performance was affected in PD-FOG for both types of saccades, indicating differences in automaticity and control in the oculomotor system related to freezing. SIGNIFICANCE These results and others show that FOG impacts non-gait motor functions, suggesting global motor impairment in PD-FOG.
Collapse
Affiliation(s)
- Samuel T Nemanich
- Program in Physical Therapy, Washington University School of Medicine in St. Louis, 4444 Forest Park Ave., Campus Box 8502, St. Louis, MO 63108, USA
| | - Gammon M Earhart
- Program in Physical Therapy, Washington University School of Medicine in St. Louis, 4444 Forest Park Ave., Campus Box 8502, St. Louis, MO 63108, USA; Department of Neuroscience, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., Campus Box 8108, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., Campus Box 8111, St. Louis, MO 63110, USA.
| |
Collapse
|
17
|
Alternating between pro- and antisaccades: switch-costs manifest via decoupling the spatial relations between stimulus and response. Exp Brain Res 2015; 234:853-65. [PMID: 26661337 DOI: 10.1007/s00221-015-4510-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 11/19/2015] [Indexed: 10/22/2022]
Abstract
Antisaccades are a nonstandard task requiring a response mirror-symmetrical to the location of a target. The completion of an antisaccade has been shown to delay the reaction time (RT) of a subsequent prosaccade, whereas the converse switch elicits a null RT cost (i.e., the unidirectional prosaccade switch-cost). The present study sought to determine whether the prosaccade switch-cost arises from low-level interference specific to the sensory features of a target (i.e., modality-dependent) or manifests via the high-level demands of dissociating the spatial relations between stimulus and response (i.e., modality-independent). Participants alternated between pro- and antisaccades wherein the target associated with the response alternated between visual and auditory modalities. Thus, the present design involved task-switch (i.e., switching from a pro- to antisaccade and vice versa) and modality-switch (i.e., switching from a visual to auditory target and vice versa) trials as well as their task- and modality-repetition counterparts. RTs were longer for modality-switch than modality-repetition trials. Notably, however, modality-switch trials did not nullify or lessen the unidirectional prosaccade switch-cost; that is, the magnitude of the RT cost for task-switch prosaccades was equivalent across modality-switch and modality-repetition trials. Thus, competitive interference within a sensory modality does not contribute to the unidirectional prosaccade switch-cost. Instead, the modality-independent findings evince that dissociating the spatial relations between stimulus and response instantiates a high-level and inertially persistent nonstandard task-set that impedes the planning of a subsequent prosaccade.
Collapse
|
18
|
Chan JL, Kucyi A, DeSouza JFX. Stable Task Representations under Attentional Load Revealed with Multivariate Pattern Analysis of Human Brain Activity. J Cogn Neurosci 2015; 27:1789-800. [PMID: 25941872 DOI: 10.1162/jocn_a_00819] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Performing multiple tasks concurrently places a load on limited attentional resources and results in disrupted task performance. Although human neuroimaging studies have investigated the neural correlates of attentional load, how attentional load affects task processing is poorly understood. Here, task-related neural activity was investigated using fMRI with conventional univariate analysis and multivariate pattern analysis (MVPA) while participants performed blocks of prosaccades and antisaccades, either with or without a rapid serial visual presentation (RSVP) task. Performing prosaccades and antisaccades with RSVP increased error rates and RTs, decreased mean activation in frontoparietal brain areas associated with oculomotor control, and eliminated differences in activation between prosaccades and antisaccades. However, task identity could be decoded from spatial patterns of activation both in the absence and presence of an attentional load. Furthermore, in the FEFs and intraparietal sulcus, these spatial representations were found to be similar using cross-trial-type MVPA, which suggests stability under attentional load. These results demonstrate that attentional load may disrupt the strength of task-related neural activity, rather than the identity of task representations.
Collapse
Affiliation(s)
| | - Aaron Kucyi
- University of Toronto.,Harvard Medical School.,Massachusetts General Hospital
| | | |
Collapse
|
19
|
Weiler J, Hassall CD, Krigolson OE, Heath M. The unidirectional prosaccade switch-cost: Electroencephalographic evidence of task-set inertia in oculomotor control. Behav Brain Res 2015; 278:323-9. [DOI: 10.1016/j.bbr.2014.10.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/05/2014] [Accepted: 10/11/2014] [Indexed: 11/25/2022]
|
20
|
Heath M, Starrs F, Macpherson E, Weiler J. Task-switching effects for visual and auditory pro- and antisaccades: evidence for a task-set inertia. J Mot Behav 2015; 47:319-27. [PMID: 25584657 DOI: 10.1080/00222895.2014.982068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The completion of an antisaccade delays the reaction time (RT) of a subsequent prosaccade; however, the converse switch does not influence RT. In accounting for this result, the task-set inertia hypothesis contends that antisaccades engender a persistent nonstandard task-set that delays the planning of a subsequent prosaccade. In contrast, the coordinate system transformation hypothesis asserts that the transformation required to construct a mirror-symmetrical target representation persistently inhibits prosaccade planning. The authors tested the latter hypothesis by examining switch-costs for pro- and antisaccades directed to visual (i.e., the stimuli used in previous work) and auditory targets. Notably, auditory cues are specified in a head-centered frame of reference prior to their conversion into the retinocentric coordinates necessary for saccade output. Thus, if the coordinate system transformation hypothesis is correct then auditory pro- and antisaccades should elicit a bidirectional switch-cost because each requires a coordinate transformation. RTs for visual and auditory modalities showed a reliable--and equivalent magnitude--prosaccade switch-cost. Moreover, performance (e.g., movement time) and kinematic (e.g., velocity) variables indicated the switch-cost was restricted to response planning. As such, results are incompatible with the coordinate system transformation hypothesis and therefore provide convergent evidence that a task-set inertia contributes to the prosaccade switch-cost.
Collapse
Affiliation(s)
- Matthew Heath
- a School of Kinesiology, The University of Western Ontario , London , Canada
| | | | | | | |
Collapse
|
21
|
Weiler J, Heath M. Oculomotor task switching: alternating from a nonstandard to a standard response yields the unidirectional prosaccade switch-cost. J Neurophysiol 2014; 112:2176-84. [PMID: 25122700 DOI: 10.1152/jn.00352.2014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The completion of an antisaccade (i.e., a nonstandard task) lengthens the reaction time (RT) of a subsequent prosaccade: a behavioral phenomenon termed the unidirectional prosaccade switch-cost. One explanation for the unidirectional prosaccade switch-cost is suppressing a stimulus-driven prosaccade during the preceding antisaccade trial engenders a residual inhibition of the oculomotor networks that support prosaccade planning (i.e., the oculomotor inhibition hypothesis). Alternatively, the unidirectional prosaccade switch-cost may reflect the persistent activation of the antisaccade's nonstandard task rules (i.e., task set), which delays the planning of the next prosaccade (i.e., task-set inertia hypothesis). To determine which hypothesis provides the most parsimonious account for the unidirectional prosaccade switch-cost, participants alternated between pro- and antisaccades wherein task instructions (i.e., pro- and antisaccade) were provided before (i.e., classic cuing) or concurrent (i.e., delayed cuing) with response cuing. Importantly, pro- and antisaccades elicited via the delayed cuing condition required the suppression of a stimulus-driven prosaccade at response cuing (i.e., response suppression) to discern the appropriate to-be-performed task. Results showed that classic and delayed antisaccades, but not delayed prosaccades, lengthened the RT of subsequent prosaccades. That delayed prosaccades, which require response suppression for their successful execution, did not lengthen the RT of subsequent prosaccades indicates that the oculomotor inhibition hypothesis does not account for the unidirectional prosaccade switch-cost. Instead, the current findings are in line with the assertion that the task set associated with a nonstandard antisaccade persists inertially and delays the planning of a subsequent prosaccade (i.e., task-set inertia hypothesis).
Collapse
Affiliation(s)
- Jeffrey Weiler
- School of Kinesiology, The University of Western Ontario, London, Ontario, Canada; and
| | - Matthew Heath
- School of Kinesiology, The University of Western Ontario, London, Ontario, Canada; and Graduate Program in Neuroscience, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
22
|
The inter-trial effect of prepared but not executed antisaccades. Exp Brain Res 2014; 232:3699-705. [DOI: 10.1007/s00221-014-4057-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/23/2014] [Indexed: 11/27/2022]
|
23
|
The unidirectional prosaccade switch-cost: Correct and error antisaccades differentially influence the planning times for subsequent prosaccades. Vision Res 2014; 96:17-24. [DOI: 10.1016/j.visres.2013.12.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 10/24/2013] [Accepted: 12/16/2013] [Indexed: 11/24/2022]
|
24
|
Repetitive antisaccade execution does not increase the unidirectional prosaccade switch-cost. Acta Psychol (Amst) 2014; 146:67-72. [PMID: 24412836 DOI: 10.1016/j.actpsy.2013.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 12/06/2013] [Accepted: 12/09/2013] [Indexed: 11/20/2022] Open
Abstract
An antisaccade is the execution of a saccade to the mirror-symmetrical location (i.e., same amplitude but opposite visual field) of a single and exogenously presented visual target. Such a response requires top-down decoupling of the normally direct spatial relations between stimulus and response and results in increased planning times and directional errors compared to their spatially compatible prosaccade counterparts. Moreover, antisaccades are associated with diffuse changes in cortical and subcortical saccade networks: a finding that has, in part, been attributed to pre-setting the oculomotor system to withhold a stimulus-driven prosaccade. Moreover, recent work has shown that a corollary cost of oculomotor pre-setting is that the planning time for a to-be-completed prosaccade is longer when preceded by an antisaccade (i.e., the unidirectional prosaccade switch-cost). Notably, this result has been attributed to antisaccades imparting a residual inhibition of the oculomotor networks that support the planning of stimulus-driven prosaccades. In the current investigation, we sought to determine if the number of antisaccades preceding a prosaccade increases this residual inhibition and thus influences the magnitude of the unidirectional prosaccade switch-cost. To that end, participants alternated between pro- and antisaccades after every second (i.e., AABB schedule) and every fourth (i.e., AAAABBBB schedule) trial. In addition, participants completed pro- and antisaccades in separate blocks of trials. Results demonstrated that task-switch prosaccades produced longer reaction times than their task-repetition and blocked condition counterparts, whereas antisaccade reaction times did not vary across task-repetition, task-switch and blocked condition trials. Most notably, the magnitude of the unidirectional prosaccade switch-cost was not modulated across the different task-switching schedules. Thus, we propose that the top-down requirements of the antisaccade task do not produce additive inhibition of stimulus-driven saccade networks.
Collapse
|
25
|
Weiler J, Mitchell T, Heath M. Response suppression delays the planning of subsequent stimulus-driven saccades. PLoS One 2014; 9:e86408. [PMID: 24466076 PMCID: PMC3899250 DOI: 10.1371/journal.pone.0086408] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 12/12/2013] [Indexed: 11/18/2022] Open
Abstract
The completion of an antisaccade selectively increases the reaction tiME (RT) of a subsequent prosaccade: a result that has been interpreted to reflect the residual inhibition of stimulus-driven saccade networks [1], [2]. In the present investigation we sought to determine whether the increase in prosaccade RT is contingent on the constituent antisaccade planning processes of response suppression and vector inversion or is limited to response suppression. To that end, in one block participants alternated between pro- and antisaccades after every second trial (task-switching block), and in another block participants completed a series of prosaccades that were randomly (and infrequently) interspersed with no-go catch-trials (go/no-go block). Notably, such a design provides a framework for disentangling whether response suppression and/or vector inversion delays the planning of subsequent prosaccades. As expected, results for the task-switching block showed that antisaccades selectively increased the RTs of subsequent prosaccades. In turn, results for the go/no-go block showed that prosaccade RTs were increased when preceded by a no-go catch-trial. Moreover, the magnitude of the RT 'cost' was equivalent across the task-switching and go/no-go blocks. That prosaccades preceded by an antisaccade or a no-go catch-trial produced equivalent RT costs indicates that the conjoint processes of response suppression and vector inversion do not drive the inhibition of saccade planning mechanisms. Rather, the present findings indicate that a general consequence of response suppression is a residual inhibition of stimulus-driven saccade networks.
Collapse
Affiliation(s)
- Jeffrey Weiler
- School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
- * E-mail:
| | - Trina Mitchell
- School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
| | - Matthew Heath
- School of Kinesiology, The University of Western Ontario, London, Ontario, Canada
- Graduate Program in Neuroscience, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|