1
|
Sansare A, Arcodia M, Lee SCK, Jeka J, Reimann H. Immediate application of low-intensity electrical noise reduced responses to visual perturbations during walking in individuals with cerebral palsy. J Neuroeng Rehabil 2024; 21:14. [PMID: 38281953 PMCID: PMC10822182 DOI: 10.1186/s12984-023-01299-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 12/19/2023] [Indexed: 01/30/2024] Open
Affiliation(s)
- Ashwini Sansare
- Department of Physical Therapy, University of Delaware, Newark, DE, USA
| | - Maelyn Arcodia
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
| | - Samuel C K Lee
- Department of Physical Therapy, University of Delaware, Newark, DE, USA
| | - John Jeka
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
| | - Hendrik Reimann
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA.
| |
Collapse
|
2
|
Taping-induced cutaneous stimulation to the ankle tendons reduces minimum toe clearance variability. Heliyon 2023; 9:e12682. [PMID: 36685399 PMCID: PMC9850051 DOI: 10.1016/j.heliyon.2022.e12682] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/21/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023] Open
Abstract
Large variability of minimum toe clearance (MTC) leads to a higher risk of tripping. Visual feedback-based gait training systems have been used to regulate MTC distribution, but these systems are expensive and bulky. Furthermore, the effect of such training lasts only for a short period of time. Considering the efficacy of elastic adhesive tape-induced cutaneous stimulation to the ankle tendons in improving proprioception and movement detection, we hypothesize that application of tapes to the ankle tendons as a practical method for modifying MTC distribution. To test this hypothesis, we recruited 13 young and healthy adults and instructed them to walk on a treadmill under four conditions: no taping, taping the tibialis anterior tendon, taping the Achilles tendon, and taping both tendons. We measured MTC distribution, lower limb joint angles and muscle activations of the tibialis anterior and gastrocnemius medialis, and compared these outcomes under the four conditions. The application of elastic adhesive tape to the ankle tendons had no significant effect on the average MTC height, but tapes applied to the Achilles tendon and both tendons significantly reduced MTC variability. Taping decreased the variability of some lower limb joint angles, but taping did not induce significant changes in the activation levels of the shank muscles. These results demonstrate that elastic adhesive tape applied to the shank can reduce MTC variability with minimal resistance, inertia and cumbersomeness.
Collapse
|
3
|
Pathak P, Moon J, Roh SG, Roh C, Shim Y, Ahn J. Application of vibration to the soles reduces minimum toe clearance variability during walking. PLoS One 2022; 17:e0261732. [PMID: 34982783 PMCID: PMC8726470 DOI: 10.1371/journal.pone.0261732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/07/2021] [Indexed: 12/18/2022] Open
Abstract
Minimum toe clearance (MTC) is an important indicator of the risk of tripping. Aging and neuromuscular diseases often decrease MTC height and increase its variability, leading to a higher risk of tripping. Previous studies have developed visual feedback-based gait training systems to modify MTC. However, these systems are bulky and expensive, and the effects of the training continue only for a short time. We paid attention to the efficacy of vibration in decreasing the variability of gait parameters, and hypothesized that proper vibration applied to soles can reduce the MTC variability. Using shoes embedded with active vibrating insoles, we assessed the efficacy of both sub- and supra-threshold vibration in affecting MTC distribution. Experiment results with 17 young and healthy adults showed that vibration applied throughout the walking task with constant intensity of 130% of sensory threshold significantly decreased MTC variability, whereas sub-threshold vibration yielded no significant effect. These results demonstrate that a properly designed tactile sensory input which is controlled and delivered by a simple wearable device, the active insole, can reduce the MTC variability during walking.
Collapse
Affiliation(s)
- Prabhat Pathak
- Department of Physical Education, Seoul National University, Seoul, Republic of Korea
| | - Jeongin Moon
- Department of Physical Education, Seoul National University, Seoul, Republic of Korea
| | - Se-gon Roh
- Robot Center in Samsung Seoul R&D Campus, Samsung Electronics Co., Ltd., Seoul, Republic of Korea
| | | | | | - Jooeun Ahn
- Department of Physical Education, Seoul National University, Seoul, Republic of Korea
- Institute of Sport Science, Seoul National University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
4
|
Muscle proprioceptive feedback can be adapted to the behavioral and emotional context in humans. CURRENT OPINION IN PHYSIOLOGY 2021. [DOI: 10.1016/j.cophys.2020.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
5
|
Georgarakis AM, Sonar HA, Rinderknecht MD, Popp WL, Duarte JE, Lambercy O, Paik J, Martin BJ, Riener R, Klamroth-Marganska V. Age-Dependent Asymmetry of Wrist Position Sense Is Not Influenced by Stochastic Tactile Stimulation. Front Hum Neurosci 2020; 14:65. [PMID: 32194386 PMCID: PMC7063068 DOI: 10.3389/fnhum.2020.00065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/12/2020] [Indexed: 12/26/2022] Open
Abstract
Stochastic stimulation has been shown to improve movement, balance, the sense of touch, and may also improve position sense. This stimulation can be non-invasive and may be a simple technology to enhance proprioception. In this study, we investigated whether sub-threshold stochastic tactile stimulation of mechanoreceptors reduces age-related errors in wrist position estimation. Fifteen young (24.5±1.5y) and 23 elderly (71.7±7.3y) unimpaired, right-handed adults completed a wrist position gauge-matching experiment. In each trial, the participant's concealed wrist was moved to a target position between 10 and 30° of wrist flexion or extension by a robotic manipulandum. The participant then estimated the wrist's position on a virtual gauge. During half of the trials, sub-threshold stochastic tactile stimulation was applied to the wrist muscle tendon areas. Stochastic stimulation did not significantly influence wrist position sense. In the elderly group, estimation errors decreased non-significantly when stimulation was applied compared to the trials without stimulation [mean constant error reduction Δμ(θconof)=0.8° in flexion and Δμ(θconoe)=0.7° in extension direction, p = 0.95]. This effect was less pronounced in the young group [Δμ(θcony)=0.2° in flexion and in extension direction, p = 0.99]. These improvements did not yield a relevant effect size (Cohen's d < 0.1). Estimation errors increased with target angle magnitude in both movement directions. In young participants, estimation errors were non-symmetric, with estimations in flexion [μ(θconyf)=1.8°, σ(θconyf)=7.0°] being significantly more accurate than in extension [μ(θconye)=8.3°, σ(θconye)=9.3°, p < 0.01]. This asymmetry was not present in the elderly group, where estimations in flexion [μ(θconof)=7.5°, σ(θconof)=9.8°] were similar to extension [μ(θconoe)=7.7°, σ(θconoe)=9.3°]. Hence, young and elderly participants performed equally in extension direction, whereas wrist position sense in flexion direction deteriorated with age (p < 0.01). Though unimpaired elderly adults did not benefit from stochastic stimulation, it cannot be deduced that individuals with more severe impairments of their sensory system do not profit from this treatment. While the errors in estimating wrist position are symmetric in flexion and extension in elderly adults, young adults are more accurate when estimating wrist flexion, an effect that has not been described before.
Collapse
Affiliation(s)
- Anna-Maria Georgarakis
- Sensory-Motor Systems (SMS) Lab, Department of Health Sciences and Technology (D-HEST), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, Switzerland.,Reharobotics Group, Medical Faculty, Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Harshal A Sonar
- Reconfigurable Robotics Laboratory (RRL), Institute of Mechanical Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Mike D Rinderknecht
- Rehabilitation Engineering Laboratory (RELab), Department of Health Sciences and Technology (D-HEST), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, Switzerland
| | - Werner L Popp
- Rehabilitation Engineering Laboratory (RELab), Department of Health Sciences and Technology (D-HEST), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, Switzerland
| | - Jaime E Duarte
- Sensory-Motor Systems (SMS) Lab, Department of Health Sciences and Technology (D-HEST), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, Switzerland.,Reharobotics Group, Medical Faculty, Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Olivier Lambercy
- Rehabilitation Engineering Laboratory (RELab), Department of Health Sciences and Technology (D-HEST), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, Switzerland
| | - Jamie Paik
- Reconfigurable Robotics Laboratory (RRL), Institute of Mechanical Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Bernard J Martin
- Department of Industrial and Operations Engineering (IOE), Center for Ergonomics, University of Michigan, Ann Arbor, MI, United States
| | - Robert Riener
- Sensory-Motor Systems (SMS) Lab, Department of Health Sciences and Technology (D-HEST), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, Switzerland
| | - Verena Klamroth-Marganska
- Sensory-Motor Systems (SMS) Lab, Department of Health Sciences and Technology (D-HEST), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Zurich, Switzerland.,Reharobotics Group, Medical Faculty, Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.,School of Health Professions, ZHAW Zurich University of Applied Sciences, Winterthur, Switzerland
| |
Collapse
|
6
|
Kabbaligere R, Layne CS, Karmali F. Perception of threshold-level whole-body motion during mechanical mastoid vibration. J Vestib Res 2019; 28:283-294. [PMID: 30149483 DOI: 10.3233/ves-180636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Vibration applied on the mastoid has been shown to be an excitatory stimulus to the vestibular receptors, but its effect on vestibular perception is unknown. OBJECTIVE Determine whether mastoid vibration affects yaw rotation perception using a self-motion perceptual direction-recognition task. METHODS We used continuous, bilateral, mechanical mastoid vibration using a stimulus with frequency content between 1 and 500 Hz. Vestibular perception of 10 healthy adults (M±S.D. = 34.3±12 years old) was tested with and without vibration. Subjects repeatedly reported the perceived direction of threshold-level yaw rotations administered at 1 Hz by a motorized platform. A cumulative Gaussian distribution function was fit to subjects' responses, which was described by two parameters: bias and threshold. Bias was defined as the mean of the Gaussian distribution, and equal to the motion perceived on average when exposed to null stimuli. Threshold was defined as the standard deviation of the distribution and corresponded to the stimulus the subject could reliably perceive. RESULTS The results show that mastoid vibration may reduce bias, although two statistical tests yield different conclusions. There was no evidence that yaw rotation thresholds were affected. CONCLUSIONS Bilateral mastoid vibration may reduce left-right asymmetry in motion perception.
Collapse
Affiliation(s)
- Rakshatha Kabbaligere
- Department of Health and Human Performance, University of Houston, Houston, TX, USA.,Center for Neuromotor and Biomechanics Research, University of Houston, Houston, TX, USA
| | - Charles S Layne
- Department of Health and Human Performance, University of Houston, Houston, TX, USA.,Center for Neuromotor and Biomechanics Research, University of Houston, Houston, TX, USA.,Center for Neuro-Engineering and Cognitive Science, University of Houston, Houston, TX, USA
| | - Faisal Karmali
- Jenks Vestibular Physiology Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA.,Department of Otolaryngology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Silva CR, Magalhães FH, Kohn AF. Fingertip-Coupled Spindle Signaling Does Not Contribute to Reduce Postural Sway Under Light Touch. Front Physiol 2019; 10:1072. [PMID: 31507441 PMCID: PMC6713998 DOI: 10.3389/fphys.2019.01072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/05/2019] [Indexed: 11/13/2022] Open
Abstract
The details of how light touch (LT) of a stable surface reduces postural sway are still not well known. We hypothesized that removal of feedback provided by muscle afferents of the touching fingertip would increase postural sway in standing subjects. Eleven participants stood upright on a force plate with eyes closed and on an unstable surface. The experimental conditions involved two different finger positions: with partial muscle afferents (PMA), which includes sensory information from the fingertip flexor muscles, and no muscle afferents (NMA), without information from either fingertip flexor or extensor muscles. In the control condition, the participants kept the same posture, but with no finger touch (NT). Postural sway in both anteroposterior (AP) and mediolateral (ML) axes were recorded. Results showed that LT decreased all sway quantifiers as compared with the NT condition. The withdrawal of information from the touch finger muscle afferents (NMA condition) did not increase postural sway. Actually, there was a small, albeit statistically significant, decrease in the variability of center of pressure displacement in the AP direction. These results indicate that in some cases, muscle afferent input may either not contribute or even worsen the overall quality of sensory feedback from a given body segment, leading to no improvement or even a slightly decreased performance of the motor control system (evaluated by means of levels of postural sway in the present investigation). The results suggest that non-spindle fingertip afferents provide the bulk of the sensory feedback associated with the fingertip that is touching a ground-referenced object during quiet standing under LT.
Collapse
Affiliation(s)
- Cristiano Rocha Silva
- Biomedical Engineering Laboratory, Universidade de São Paulo, EPUSP, São Paulo, Brazil.,Neuroscience Program, Universidade de São Paulo, São Paulo, Brazil
| | - Fernando Henrique Magalhães
- Biomedical Engineering Laboratory, Universidade de São Paulo, EPUSP, São Paulo, Brazil.,Neuroscience Program, Universidade de São Paulo, São Paulo, Brazil.,School of Arts, Sciences and Humanities, Universidade de São Paulo, EACH-USP, São Paulo, Brazil
| | - André Fabio Kohn
- Biomedical Engineering Laboratory, Universidade de São Paulo, EPUSP, São Paulo, Brazil.,Neuroscience Program, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Iandolo R, Carè M, Shah VA, Schiavi S, Bommarito G, Boffa G, Giannoni P, Inglese M, Mrotek LA, Scheidt RA, Casadio M. A two alternative forced choice method for assessing vibrotactile discrimination thresholds in the lower limb. Somatosens Mot Res 2019; 36:162-170. [PMID: 31267810 DOI: 10.1080/08990220.2019.1632184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The development of an easy to implement, quantitative measure to examine vibration perception would be useful for future application in clinical settings. Vibration sense in the lower limb of younger and older adults was examined using the method of constant stimuli (MCS) and the two-alternative forced choice paradigm. The focus of this experiment was to determine an appropriate stimulation site on the lower limb (tendon versus bone) to assess vibration threshold and to determine if the left and right legs have varying thresholds. Discrimination thresholds obtained at two stimulation sites in the left and right lower limbs showed differences in vibration threshold across the two ages groups, but not across sides of the body nor between stimulation sites within each limb. Overall, the MCS can be implemented simply, reliably, and with minimal time. It can also easily be implemented with low-cost technology. Therefore, it could be a good candidate method to assess the presence of specific deep sensitivity deficits in clinical practice, particularly in populations likely to show the onset of sensory deficits.
Collapse
Affiliation(s)
- Riccardo Iandolo
- a Robotics, Brain and Cognitive Sciences , Istituto Italiano di Tecnologia , Genova , Italy.,b Department of Informatics, Bioengineering, Robotics and System Engineering , University of Genova , Genova , Italy
| | - Marta Carè
- b Department of Informatics, Bioengineering, Robotics and System Engineering , University of Genova , Genova , Italy
| | - Valay A Shah
- c Department of Biomedical Engineering , Marquette University and Medical College of Wisconsin , Milwaukee , WI , USA
| | - Simona Schiavi
- d Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health , University of Genova , Genova , Italy
| | - Giulia Bommarito
- d Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health , University of Genova , Genova , Italy
| | - Giacomo Boffa
- d Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health , University of Genova , Genova , Italy
| | - Psiche Giannoni
- b Department of Informatics, Bioengineering, Robotics and System Engineering , University of Genova , Genova , Italy
| | - Matilde Inglese
- d Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health , University of Genova , Genova , Italy.,e Ospedale Policlinico San Martino-IRCSS , Genova , Italy
| | - Leigh Ann Mrotek
- c Department of Biomedical Engineering , Marquette University and Medical College of Wisconsin , Milwaukee , WI , USA
| | - Robert A Scheidt
- c Department of Biomedical Engineering , Marquette University and Medical College of Wisconsin , Milwaukee , WI , USA.,f Feinberg School of Medicine , Northwestern University , Chicago , IL , USA.,g Division of Civil, Mechanical and Manufacturing Innovation , National Science Foundation , Alexandria , VA , USA
| | - Maura Casadio
- a Robotics, Brain and Cognitive Sciences , Istituto Italiano di Tecnologia , Genova , Italy.,b Department of Informatics, Bioengineering, Robotics and System Engineering , University of Genova , Genova , Italy
| |
Collapse
|
9
|
The effects of sub-threshold vibratory noise on visuomotor entrainment during human walking and standing in a virtual reality environment. Hum Mov Sci 2019; 66:587-599. [PMID: 31255870 PMCID: PMC6934930 DOI: 10.1016/j.humov.2019.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 01/25/2023]
Abstract
Humans will naturally synchronize their posture to the motion of a visual surround, but it is unclear if this visuomotor entrainment can be attenuated with an increased sensitivity to somatosensory information. Sub-threshold vibratory noise applied to the Achilles tendons has proven to enhance ankle proprioception through the phenomenon of stochastic resonance. Our purpose was to compare visuomotor entrainment during walking and standing, and to understand how this entrainment might be attenuated by applying sub-threshold vibratory noise over the Achilles tendons. We induced visuomotor entrainment during standing and treadmill walking for ten subjects (24.5 ± 2.9 years) using a speed-matched virtual hallway with continuous mediolateral perturbations at three different frequencies. Vibrotactile motors over the Achilles tendons provided noise (0-400 Hz) with an amplitude set to 90% of each participant's sensory threshold. Mediolateral sacrum, C7, and head motion was greatly amplified (4-8× on average) at the perturbation frequencies during walking, but was much less pronounced during standing. During walking, individuals with greater mediolateral head motion at the fastest perturbation frequency saw the greatest attenuation of that motion with applied noise. Similarly, during standing, individuals who exhibited greater postural sway (as measured by the center of pressure) also saw the greatest reductions in sway with sub-threshold noise applied in three of our summary metrics. Our results suggest that, at least for healthy young adults, sub-threshold vibratory noise over the Achilles tendons can slightly improve postural control during disruptive mediolateral visual perturbations, but the applied noise does not substantially attenuate visuomotor entrainment during walking or standing.
Collapse
|
10
|
Henry M, Baudry S. Age-related changes in leg proprioception: implications for postural control. J Neurophysiol 2019; 122:525-538. [PMID: 31166819 DOI: 10.1152/jn.00067.2019] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In addition to being a prerequisite for many activities of daily living, the ability to maintain steady upright standing is a relevant model to study sensorimotor integrative function. Upright standing requires managing multimodal sensory inputs to produce finely tuned motor output that can be adjusted to accommodate changes in standing conditions and environment. The sensory information used for postural control mainly arises from the vestibular system of the inner ear, vision, and proprioception. Proprioception (sense of body position and movement) encompasses signals from mechanoreceptors (proprioceptors) located in muscles, tendons, and joint capsules. There is general agreement that proprioception signals from leg muscles provide the primary source of information for postural control. This is because of their exquisite sensitivity to detect body sway during unperturbed upright standing that mainly results from variations in leg muscle length induced by rotations around the ankle joint. However, aging is associated with alterations of muscle spindles and their neural pathways, which induce a decrease in the sensitivity, acuity, and integration of the proprioceptive signal. These alterations promote changes in postural control that reduce its efficiency and thereby may have deleterious consequences for the functional independence of an individual. This narrative review provides an overview of how aging alters the proprioceptive signal from the legs and presents compelling evidence that these changes modify the neural control of upright standing.
Collapse
Affiliation(s)
- Mélanie Henry
- Laboratory of Applied Biology and Research Unit in Applied Neurophysiology, ULB Neuroscience Institute, Université libre de Bruxelles, Brussels, Belgium
| | - Stéphane Baudry
- Laboratory of Applied Biology and Research Unit in Applied Neurophysiology, ULB Neuroscience Institute, Université libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
11
|
Samain-Aupic L, Ackerley R, Aimonetti JM, Ribot-Ciscar E. Emotions can alter kinesthetic acuity. Neurosci Lett 2019; 694:99-103. [PMID: 30500394 DOI: 10.1016/j.neulet.2018.11.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 11/26/2022]
Abstract
Kinesthesia, the perception of our own body movements, relies on the integration of proprioceptive information arising mostly from muscle spindles, which are sensory receptors in skeletal muscles. We recently showed that emotions alter the proprioceptive messages from such muscle afferents, making them more sensitive to muscle lengthening when participants were listening sad music. Presently, we investigated whether these changes in proprioceptive feedback relating to emotional state may affect the perception of limb movements. Kinesthetic acuity was tested in 20 healthy, young adults by imposing ramp-and-hold movements that consisted of either plantar flexion or dorsiflexion movements of the ankle at 0.04°/s, or no movement. These were imposed during four emotional conditions (listening to neutral, sad, or happy music, or no music). The participants were asked to relax and focus on music (or nothing), and then they shifted their focus to the direction of an incoming movement. Once this had finished, they were asked its direction. Muscle activity, heart rate, and electrodermal activity were recorded during each trial, and after each music condition the participants rated the emotion felt on a visual analog scale. The rating of the emotional content of the music corroborated with changes in physiological measures. Kinesthetic acuity was also affected by the emotional state and found to be larger during the sad condition, as compared to the no music or neutral conditions. We conclude that emotion can shape our perception of movements, which we show here where feeling sadness significantly increase our kinesthetic acuity, this may be functionally relevant for the preparation of appropriate behavioral responses.
Collapse
Affiliation(s)
- Léonard Samain-Aupic
- Aix Marseille Univ, CNRS, LNSC (Laboratoire de Neurosciences Sensorielles et Cognitives-UMR 7260), Marseille, France
| | - Rochelle Ackerley
- Aix Marseille Univ, CNRS, LNSC (Laboratoire de Neurosciences Sensorielles et Cognitives-UMR 7260), Marseille, France
| | - Jean-Marc Aimonetti
- Aix Marseille Univ, CNRS, LNSC (Laboratoire de Neurosciences Sensorielles et Cognitives-UMR 7260), Marseille, France
| | - Edith Ribot-Ciscar
- Aix Marseille Univ, CNRS, LNSC (Laboratoire de Neurosciences Sensorielles et Cognitives-UMR 7260), Marseille, France.
| |
Collapse
|
12
|
Effects of White Noise Achilles Tendon Vibration on Quiet Standing and Active Postural Positioning. J Appl Biomech 2018; 34:151-158. [PMID: 29139321 DOI: 10.1123/jab.2016-0359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Applying white noise vibration to the ankle tendons has previously been used to improve passive movement detection and alter postural control, likely by enhancing proprioceptive feedback. The aim of the present study was to determine if similar methods focused on the ankle plantarflexors affect the performance of both quiet standing and an active postural positioning task, in which participants may be more reliant on proprioceptive feedback from actively contracting muscles. Twenty young, healthy participants performed quiet standing trials and active postural positioning trials designed to encourage reliance on plantarflexor proprioception. Performance under normal conditions with no vibration was compared to performance with 8 levels of vibration amplitude applied to the bilateral Achilles tendons. Vibration amplitude was set either as a percentage of sensory threshold (n = 10) or by root-mean-square (RMS) amplitude (n = 10). No vibration amplitude had a significant effect on quiet standing. In contrast, accuracy of the active postural positioning task was significantly (P = .001) improved by vibration with an RMS amplitude of 30 μm. Setting vibration amplitude based on sensory threshold did not significantly affect postural positioning accuracy. The present results demonstrate that appropriate amplitude tendon vibration may hold promise for enhancing the use of proprioceptive feedback during functional active movement.
Collapse
|
13
|
Georgarakis AM, Sonar HA, Rinderknecht MD, Lambercy O, Martin BJ, Klamroth-Marganska V, Paik J, Riener R, Duarte JE. A novel pneumatic stimulator for the investigation of noise-enhanced proprioception. IEEE Int Conf Rehabil Robot 2017; 2017:25-30. [PMID: 28813788 DOI: 10.1109/icorr.2017.8009216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Executing coordinated movements requires that motor and sensory systems cooperate to achieve a motor goal. Impairment of either system may lead to unstable and/or inaccurate movements. In rehabilitation training, however, most approaches have focused on the motor aspects of the control loop. We are examining mechanisms that may enhance the sensory system to improve motor control. More precisely, the effects of stochastic subliminal vibratory tactile stimulation on wrist proprioception. We developed a device - based on a novel soft pneumatic actuator skin technology - to stimulate multiple sites simultaneously and independently. This device applies vibratory stimulation (amplitude < 0.50 mm, bandwidth 20-120 Hz) to the skin overlaying the tendons of a joint to target the receptors in charge of position and movement encoding. It achieves high spatial resolution (< 1 mm2), uses a soft and flexible interface, and has the potential to be used in combination with additional rehabilitation interventions. We conducted a feasibility study with 16 healthy subjects (11 younger - 6 females; 5 older - 2 females) in which a robotic manipulandum moved the subject's wrist to defined positions that had to be matched with a gauge. Comparing trials with and without stimulation we found that stochastic stimulation influenced joint position sense. The device we developed can be readily used in psycho-physical experiments, and subsequently benefit physiotherapy and rehabilitation treatments.
Collapse
|
14
|
Improved proprioceptive function by application of subsensory electrical noise: Effects of aging and task-demand. Neuroscience 2017; 358:103-114. [PMID: 28673710 DOI: 10.1016/j.neuroscience.2017.06.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/21/2017] [Accepted: 06/23/2017] [Indexed: 11/23/2022]
Abstract
The application of subsensory noise stimulation over the lower limbs has been shown to improve proprioception and postural control under certain conditions. Whereas the effect specificity seems to depend on several factors, studies are still needed to determine the appropriate method for training and rehabilitation purposes. In the current study, we investigated whether the application of subsensory electrical noise over the legs improves proprioceptive function in young and older adults. We aimed to provide evidence that stronger and age-related differential effects occur in more demanding tasks. Proprioceptive function was initially assessed by testing the detection of passive ankle movement (kinesthetic perception) in twenty-eight subjects (14 young and 14 older adults). Thereafter, postural control was assessed during tasks with different sensory challenges: i) by removing visual information (eyes closed) and; ii) by moving the visual scene (moving room paradigm). Tests performed with the application of electrical noise stimulation were compared to those performed without noise. The results showed that electrical noise applied over the legs led to a reduction in the response time to kinesthetic perception in both young and older adults. On the other hand, the magnitude of postural sway was reduced by noise stimulation only during a more challenging task, namely, when the optical flow was changing in an unpredictable (nonperiodic) manner. No differential effects of stimulation between groups were observed. These findings suggest that the relevance of proprioceptive inputs in tasks with different challenges, but not the subjects' age, is a determining factor for sensorimotor improvements due to electrical noise stimulation.
Collapse
|
15
|
Foisy A, Kapoula Z. How Plantar Exteroceptive Efficiency Modulates Postural and Oculomotor Control: Inter-Individual Variability. Front Hum Neurosci 2016; 10:228. [PMID: 27242490 PMCID: PMC4866577 DOI: 10.3389/fnhum.2016.00228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 04/29/2016] [Indexed: 11/13/2022] Open
Abstract
In a previous experiment, we showed that among young and healthy subjects, thin plantar inserts improve postural control and modify vergence amplitudes. In this experiment, however, significant inter-individual variability was observed. We hypothesize that its origin could be attributed to a different reliance upon feet cutaneous afferents. In order to test this hypothesis, we re-analyzed the data relative to 31 young (age 25.7 ± 3.8) and healthy subjects who participated in the first experiment after having classified them into two groups depending on their Plantar Quotient (PQ = Surface area of CoPfoam/Surface area of CoPfirm ground × 100). Foam decreases the information arising from the feet, normally resulting in a PQ > 100. Hence, the PQ provides information on the weight of plantar cutaneous afferents used in postural control. Twelve people were Plantar-Independent Subjects, as indicated by a PQ < 100. These individuals did not behave like the Normal Plantar Quotient Subjects: they were almost insensitive to the plantar stimulations in terms of postural control and totally insensitive in terms of oculomotor control. We conclude that the inter-individual variability observed in our first experiment is explained by the subjects' degree of plantar reliance. We propose that plantar independence is a dysfunctional situation revealing inefficiency in plantar cutaneous afferents. The latter could be due to a latent somatosensory dysfunction generating a noise which prevents the CNS from correctly processing and using feet somatosensory afferents both for balance and vergence control: Plantar Irritating Stimulus. Considering the non-noxious nature and prevalence of this phenomenon, these results can be of great interest to researchers and clinicians who attempt to trigger postural or oculomotor responses through mechanical stimulation of the foot sole.
Collapse
Affiliation(s)
- Arnaud Foisy
- IRIS Team, Physiopathologie de la Vision et Motricité Binoculaire, FR3636 Neurosciences Centre National de la Recherche Scientifique University Paris Descartes Paris, France
| | - Zoï Kapoula
- IRIS Team, Physiopathologie de la Vision et Motricité Binoculaire, FR3636 Neurosciences Centre National de la Recherche Scientifique University Paris Descartes Paris, France
| |
Collapse
|
16
|
Borel L, Ribot-Ciscar E. Improving postural control by applying mechanical noise to ankle muscle tendons. Exp Brain Res 2016; 234:2305-14. [PMID: 27021075 DOI: 10.1007/s00221-016-4636-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/18/2016] [Indexed: 10/22/2022]
Abstract
The application of subthreshold mechanical vibrations with random frequencies (white mechanical noise) to ankle muscle tendons is known to increase muscle proprioceptive information and to improve the detection of ankle movements. The aim of the present study was to analyze the effect of this mechanical noise on postural control, its possible modulation according to the sensory strategies used for postural control, and the consequences of increasing postural difficulty. The upright stance of 20 healthy young participants tested with their eyes closed was analyzed during the application of four different levels of noise and compared to that in the absence of noise (control) in three conditions: static, static on foam, and dynamic (sinusoidal translation). The quiet standing condition was conducted with the eyes open and closed to determine the subjects' visual dependency to maintain postural stability. Postural performance was assessed using posturographic and motion analysis evaluations. The results in the static condition showed that the spectral power density of body sway significantly decreased with an optimal level of noise and that the higher the spectral power density without noise, the greater the noise effect, irrespective of visual dependency. Finally, noise application was ineffective in the foam and dynamic conditions. We conclude that the application of mechanical noise to ankle muscle tendons is a means to improve quiet standing only. These results suggest that mechanical noise stimulation may be more effective in more impaired populations.
Collapse
Affiliation(s)
- Liliane Borel
- Aix-Marseille Université, CNRS, NIA UMR 7260, Case B, Centre Saint-Charles, Place Victor Hugo, 13331, Marseille Cedex 03, France.
| | - Edith Ribot-Ciscar
- Aix-Marseille Université, CNRS, NIA UMR 7260, Case B, Centre Saint-Charles, Place Victor Hugo, 13331, Marseille Cedex 03, France
| |
Collapse
|
17
|
Toledo DR, Manzano GM, Barela JA, Kohn AF. Cortical correlates of response time slowing in older adults: ERP and ERD/ERS analyses during passive ankle movement. Clin Neurophysiol 2016; 127:655-663. [DOI: 10.1016/j.clinph.2015.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 04/25/2015] [Accepted: 05/02/2015] [Indexed: 11/25/2022]
|
18
|
Hubbuch JE, Bennett BW, Dean JC. Proprioceptive feedback contributes to the adaptation toward an economical gait pattern. J Biomech 2015; 48:2925-31. [PMID: 25935689 DOI: 10.1016/j.jbiomech.2015.04.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 04/04/2015] [Indexed: 11/17/2022]
Abstract
Humans generally prefer gait patterns with a low metabolic cost, but it is unclear how such patterns are chosen. We have previously proposed that humans may use proprioceptive feedback to identify economical movement patterns. The purpose of the present experiments was to investigate the role of plantarflexor proprioception in the adaptation toward an economical gait pattern. To disrupt proprioception in some trials, we applied noisy vibration (randomly varying between 40-120Hz) over the bilateral Achilles tendons while participants stood quietly or walked on a treadmill. For all 10min walking trials, the treadmill surface was initially level before slowly increasing to a 2.5% incline midway through the trial without participant knowledge. During standing posture, noisy vibration increased sway, indicating decreased proprioception accuracy. While walking on a level surface, vibration did not significantly influence stride period or metabolic rate. However, vibration had clear effects for the first 2-3min after the incline increase; vibration caused participants to walk with shorter stride periods, reduced medial gastrocnemius (MG) activity during mid-stance (30-65% stance), and increased MG activity during late-stance (65-100% stance). Over time, these metrics gradually converged toward the gait pattern without vibration. Likely as a result of this delayed adaptation to the new mechanical context, the metabolic rate when walking uphill was significantly higher in the presence of noisy vibration. These results may be explained by the disruption of proprioception preventing rapid identification of muscle activation patterns which allow the muscles to operate under favorable mechanical conditions with low metabolic demand.
Collapse
Affiliation(s)
- Jill E Hubbuch
- Division of Physical Therapy, College of Health Professions, Medical University of South Carolina, Charleston, SC, USA
| | - Blake W Bennett
- Division of Physical Therapy, College of Health Professions, Medical University of South Carolina, Charleston, SC, USA
| | - Jesse C Dean
- Division of Physical Therapy, College of Health Professions, Medical University of South Carolina, Charleston, SC, USA; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA.
| |
Collapse
|
19
|
Wellinghoff MA, Bunchman AM, Dean JC. Gradual mechanics-dependent adaptation of medial gastrocnemius activity during human walking. J Neurophysiol 2014; 111:1120-31. [PMID: 24335207 PMCID: PMC3949234 DOI: 10.1152/jn.00251.2013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 12/08/2013] [Indexed: 01/13/2023] Open
Abstract
While performing a simple bouncing task, humans modify their preferred movement period and pattern of plantarflexor activity in response to changes in system mechanics. Over time, the preferred movement pattern gradually adapts toward the resonant frequency. The purpose of the present experiments was to determine whether humans undergo a similar process of gradually adapting their stride period and plantarflexor activity after a change in mechanical demand while walking. Participants walked on a treadmill while we measured stride period and plantarflexor activity (medial gastrocnemius and soleus). Plantarflexor activity during stance was divided into a storage phase (30-65% stance) and a return phase (65-100% stance) based on when the Achilles tendon has previously been shown to store and return mechanical energy. Participants walked either on constant inclines (0%, 1%, 5%, 9%) or on a variable incline (0-1%) for which they were unaware of the incline changes. For variable-incline trials, participants walked under both single-task and dual-task conditions in order to vary the cognitive load. Both stride period and plantarflexor activity increased at steeper inclines. During single-task walking, small changes in incline were followed by gradual adaptation of storage-phase medial gastrocnemius activity. However, this adaptation was not present during dual-task walking, indicating some level of cognitive involvement. The observed adaptation may be the result of using afferent feedback in order to optimize the contractile conditions of the plantarflexors during the stance phase. Such adaptation could serve to improve metabolic economy but may be limited in clinical populations with disrupted proprioception.
Collapse
Affiliation(s)
- Molly A Wellinghoff
- Division of Physical Therapy, College of Health Professions, Medical University of South Carolina, Charleston, South Carolina; and
| | | | | |
Collapse
|
20
|
Magalhães FH, Kohn AF. Effectiveness of electrical noise in reducing postural sway: a comparison between imperceptible stimulation applied to the anterior and to the posterior leg muscles. Eur J Appl Physiol 2014; 114:1129-41. [DOI: 10.1007/s00421-014-2846-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 02/04/2014] [Indexed: 11/24/2022]
|