1
|
Motivation by reward jointly improves speed and accuracy, whereas task-relevance and meaningful images do not. Atten Percept Psychophys 2022; 85:930-948. [PMID: 36289140 PMCID: PMC10066132 DOI: 10.3758/s13414-022-02587-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2022] [Indexed: 11/08/2022]
Abstract
AbstractVisual selection is characterized by a trade-off between speed and accuracy. Speed or accuracy of the selection process can be affected by higher level factors—for example, expecting a reward, obtaining task-relevant information, or seeing an intrinsically relevant target. Recently, motivation by reward has been shown to simultaneously increase speed and accuracy, thus going beyond the speed–accuracy-trade-off. Here, we compared the motivating abilities of monetary reward, task-relevance, and image content to simultaneously increase speed and accuracy. We used a saccadic distraction task that required suppressing a distractor and selecting a target. Across different blocks successful target selection was followed either by (i) a monetary reward, (ii) obtaining task-relevant information, or (iii) seeing the face of a famous person. Each block additionally contained the same number of irrelevant trials lacking these consequences, and participants were informed about the upcoming trial type. We found that postsaccadic vision of a face affected neither speed nor accuracy, suggesting that image content does not affect visual selection via motivational mechanisms. Task relevance increased speed but decreased selection accuracy, an observation compatible with a classical speed–accuracy trade-off. Motivation by reward, however, simultaneously increased response speed and accuracy. Saccades in all conditions deviated away from the distractor, suggesting that the distractor was suppressed, and this deviation was strongest in the reward block. Drift-diffusion modelling revealed that task-relevance affected behavior by affecting decision thresholds, whereas motivation by reward additionally increased the rate of information uptake. The present findings thus show that the three consequences differ in their motivational abilities.
Collapse
|
2
|
Controlling a Mouse Pointer with a Single-Channel EEG Sensor. SENSORS 2021; 21:s21165481. [PMID: 34450924 PMCID: PMC8400812 DOI: 10.3390/s21165481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 11/29/2022]
Abstract
(1) Goals: The purpose of this study was to analyze the feasibility of using the information obtained from a one-channel electro-encephalography (EEG) signal to control a mouse pointer. We used a low-cost headset, with one dry sensor placed at the FP1 position, to steer a mouse pointer and make selections through a combination of the user’s attention level with the detection of voluntary blinks. There are two types of cursor movements: spinning and linear displacement. A sequence of blinks allows for switching between these movement types, while the attention level modulates the cursor’s speed. The influence of the attention level on performance was studied. Additionally, Fitts’ model and the evolution of the emotional states of participants, among other trajectory indicators, were analyzed. (2) Methods: Twenty participants distributed into two groups (Attention and No-Attention) performed three runs, on different days, in which 40 targets had to be reached and selected. Target positions and distances from the cursor’s initial position were chosen, providing eight different indices of difficulty (IDs). A self-assessment manikin (SAM) test and a final survey provided information about the system’s usability and the emotions of participants during the experiment. (3) Results: The performance was similar to some brain–computer interface (BCI) solutions found in the literature, with an averaged information transfer rate (ITR) of 7 bits/min. Concerning the cursor navigation, some trajectory indicators showed our proposed approach to be as good as common pointing devices, such as joysticks, trackballs, and so on. Only one of the 20 participants reported difficulty in managing the cursor and, according to the tests, most of them assessed the experience positively. Movement times and hit rates were significantly better for participants belonging to the attention group. (4) Conclusions: The proposed approach is a feasible low-cost solution to manage a mouse pointer.
Collapse
|
3
|
|
4
|
Martelli F, Palermo E, Del Prete Z, Rossi S. Using an ankle robotic device for motor performance and motor learning evaluation. Heliyon 2020; 6:e03262. [PMID: 32021934 PMCID: PMC6994316 DOI: 10.1016/j.heliyon.2020.e03262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 05/14/2019] [Accepted: 01/15/2020] [Indexed: 11/18/2022] Open
Abstract
In this paper we performed the evaluation of ankle motor performance and motor learning during a goal-directed task, executed using the pediAnklebot robot. The protocol consisted of 3 phases (Familiarization, Adaptation, and Wash Out) repeated one time for each movement direction (plantarflexion, dorsiflexion, inversion, and eversion). During Familiarization and Wash out subjects performed goal-directed movements in unperturbed environment, whereas during Adaptation phase, a curl viscous force field was applied and it was randomly removed 10 times out of 200. Ankle motor performance was evaluated by means of a set of indices grouped into: accuracy, smoothness, temporal, and stopping indices. Learning Index was calculated to study the motor learning during the adaptation phase, which was subdivided into 5 temporal intervals (target sets). The outcomes related to the ankle motor performance highlighted that the best performance in terms of accuracy and smoothness of the trajectories was obtained in dorsiflexion movements in the sagittal plane, and in inversion rotations in the frontal plane. Differences between movement directions revealed an anisotropic behavior of the ankle joint. Results of the Learning index showed a capability of the subjects to rapidly adapt to a perturbed force field depending on the magnitude of the perceived field.
Collapse
Affiliation(s)
- Francesca Martelli
- Department of Mechanical and Aerospace Engineering (DIMA), Sapienza University of Rome, Roma, Italy
| | - Eduardo Palermo
- Department of Mechanical and Aerospace Engineering (DIMA), Sapienza University of Rome, Roma, Italy
| | - Zaccaria Del Prete
- Department of Mechanical and Aerospace Engineering (DIMA), Sapienza University of Rome, Roma, Italy
| | - Stefano Rossi
- Department of Economics, Engineering, Society and Business Organization (DEIM), University of Tuscia, Viterbo, Italy
| |
Collapse
|
5
|
Abstract
A deep analysis of ankle mechanical properties is a fundamental step in the design of an exoskeleton, especially if it is to be suitable for both adults and children. This study aims at assessing age-related differences of ankle properties using pediAnklebot. To achieve this aim, we enrolled 16 young adults and 10 children in an experimental protocol that consisted of the evaluation of ankle mechanical impedance and kinematic performance. Ankle impedance was measured by imposing stochastic torque perturbations in dorsi-plantarflexion and inversion-eversion directions. Kinematic performance was assessed by asking participants to perform a goaldirected task. Magnitude and anisotropy of impedance were computed using a multipleinput multiple-output system. Kinematic performance was quantified by computing indices of accuracy, smoothness, and timing. Adults showed greater magnitude of ankle impedance in both directions and for all frequencies, while the anisotropy was higher in children. By analyzing kinematics, children performed movements with lower accuracy and higher smoothness, while no differences were found for the duration of the movement. In addition, adults showed a greater ability to stop the movement when hitting the target. These findings can be useful to a proper development of robotic devices, as well as for implementation of specific training programs.
Collapse
|
6
|
Guigon E, Chafik O, Jarrassé N, Roby-Brami A. Experimental and theoretical study of velocity fluctuations during slow movements in humans. J Neurophysiol 2019; 121:715-727. [PMID: 30649981 DOI: 10.1152/jn.00576.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Moving smoothly is generally considered as a higher-order goal of motor control and moving jerkily as a witness of clumsiness or pathology, yet many common and well-controlled movements (e.g., tracking movements) have irregular velocity profiles with widespread fluctuations. The origin and nature of these fluctuations have been associated with the operation of an intermittent process but in fact remain poorly understood. Here we studied velocity fluctuations during slow movements, using combined experimental and theoretical tools. We recorded arm movement trajectories in a group of healthy participants performing back-and-forth movements at different speeds, and we analyzed velocity profiles in terms of series of segments (portions of velocity between 2 minima). We found that most of the segments were smooth (i.e., corresponding to a biphasic acceleration) and had constant duration irrespective of movement speed and linearly increasing amplitude with movement speed. We accounted for these observations with an optimal feedback control model driven by a staircase goal position signal in the presence of sensory noise. Our study suggests that one and the same control process can explain the production of fast and slow movements, i.e., fast movements emerge from the immediate tracking of a global goal position and slow movements from the successive tracking of intermittently updated intermediate goal positions. NEW & NOTEWORTHY We show in experiments and modeling that slow movements could result from the brain tracking a sequence of via points regularly distributed in time and space. Accordingly, slow movements would differ from fast movement by the nature of the guidance and not by the nature of control. This result could help in understanding the origin and nature of slow and segmented movements frequently observed in brain disorders.
Collapse
Affiliation(s)
- Emmanuel Guigon
- Institut des Systèmes Intelligents et de Robotique, CNRS, Sorbonne Université , Paris , France
| | - Oussama Chafik
- Institut des Systèmes Intelligents et de Robotique, CNRS, Sorbonne Université , Paris , France
| | - Nathanaël Jarrassé
- Institut des Systèmes Intelligents et de Robotique, CNRS, Sorbonne Université , Paris , France
| | - Agnès Roby-Brami
- Institut des Systèmes Intelligents et de Robotique, CNRS, Sorbonne Université , Paris , France
| |
Collapse
|
7
|
Martelli F, Palermo E, Rossi S. A novel protocol to evaluate ankle movements during reaching tasks using pediAnklebot. IEEE Int Conf Rehabil Robot 2017; 2017:326-331. [PMID: 28813840 DOI: 10.1109/icorr.2017.8009268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The aim of the study is to design a novel protocol to characterize the ankle movements during dorsal and plantar flexion reaching tasks using the pediAnklebot. Five healthy children were instructed to control a pointer and hit targets appearing on the monitor, by moving their ankle alternatively up and down. The protocol consisted of 60 targets, 30 up and 30 down, reachable via dorsiflexion and plantarflexion movements, respectively. Ankle angular displacements and torques were gathered by encoders and load cells embedded in the robot. Ankle motor performance was evaluated by means of kinematic, submovements and dynamic indices. Results suggest that (i) plantarflexion movements are faster and more accurate than the dorsiflexion ones, but children are able to perform with a higher level of smoothness the latter ones; (ii) children are able to stop the ankle movement more easily at the end of dorsiflexion rather than plantarflexion; (iii) the central nervous system plans plantarflexion and dorsiflexion movements with the same efficiency; (iv) children apply different torque levels during the two motor tasks and they cannot balance the inversion and eversion moments during dorsiflexion. These findings provide an important starting point for the assessment of a reference baseline of motor indices for the ankle joint.
Collapse
|
8
|
Kommalapati R, Michmizos KP. Virtual reality for pediatric neuro-rehabilitation: adaptive visual feedback of movement to engage the mirror neuron system. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:5849-5852. [PMID: 28269584 DOI: 10.1109/embc.2016.7592058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Sensorimotor therapy gives optimal results when patients are cognitively engaged into highly repetitive tasks, a goal that most children find hard to pursue. This paper presents the key developments of our ongoing effort to design an interactive rehabilitation environment that motivates physically impaired children throughout their therapy. The continuous motivation is achieved by the system adapting fundamental therapeutic components to the performance of each child. The relevant movement is mirrored to an animated character projected in front of the child. We speculate that the visual observation of one's own movements will activate the "mirror neuron system", a brain system underlying the human capacity to learn by imitation. Our rehabilitation algorithm personalizes the difficulty of the tasks by adapting the difficulty of reaching virtual targets on the animated environment through changing the visual gain between real and animated movements. To track the sensorimotor performance, we estimated the time required to reach a target. To give a proof of concept for the adaptation of the visual gain, we developed a serious game driven by a Leap Motion device. In addition to becoming a testbed for studying sensorimotor integration and neuroplasticity, the proposed notion of visual gain can be integrated into a highly engaging environment in which physically impaired children will play their way to recovery.
Collapse
|
9
|
Michmizos KP, Krebs HI. Pediatric robotic rehabilitation: Current knowledge and future trends in treating children with sensorimotor impairments. NeuroRehabilitation 2017; 41:69-76. [PMID: 28505989 DOI: 10.3233/nre-171458] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Robot-aided sensorimotor therapy imposes highly repetitive tasks that can translate to substantial improvement when patients remain cognitively engaged into the clinical procedure, a goal that most children find hard to pursue. Knowing that the child's brain is much more plastic than an adult's, it is reasonable to expect that the clinical gains observed in the adult population during the last two decades would be followed up by even greater gains in children. Nonetheless, and despite the multitude of adult studies, in children we are just getting started: There is scarcity of pediatric robotic rehabilitation devices that are currently available and the number of clinical studies that employ them is also very limited. PURPOSE We have recently developed the MIT's pedi-Anklebot, an adaptive habilitation robotic device that continuously motivates physically impaired children to do their best by tracking the child's performance and modifying their therapy accordingly. The robot's design is based on a multitude of studies we conducted focusing on the ankle sensorimotor control. In this paper, we briefly describe the device and the adaptive environment we built around the impaired children, present the initial clinical results and discuss how they could steer future trends in pediatric robotic therapy. CONCLUSIONS The results support the potential for future interventions to account for the differences in the sensorimotor control of the targeted limbs and their functional use (rhythmic vs. discrete movements and mechanical impedance training) and explore how the new technological advancements such as the augmented reality would employ new knowledge from neuroscience.
Collapse
Affiliation(s)
| | - Hermano Igo Krebs
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
10
|
Willett FR, Murphy BA, Memberg WD, Blabe CH, Pandarinath C, Walter BL, Sweet JA, Miller JP, Henderson JM, Shenoy KV, Hochberg LR, Kirsch RF, Ajiboye AB. Signal-independent noise in intracortical brain-computer interfaces causes movement time properties inconsistent with Fitts' law. J Neural Eng 2017; 14:026010. [PMID: 28177925 DOI: 10.1088/1741-2552/aa5990] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Do movements made with an intracortical BCI (iBCI) have the same movement time properties as able-bodied movements? Able-bodied movement times typically obey Fitts' law: [Formula: see text] (where MT is movement time, D is target distance, R is target radius, and [Formula: see text] are parameters). Fitts' law expresses two properties of natural movement that would be ideal for iBCIs to restore: (1) that movement times are insensitive to the absolute scale of the task (since movement time depends only on the ratio [Formula: see text]) and (2) that movements have a large dynamic range of accuracy (since movement time is logarithmically proportional to [Formula: see text]). APPROACH Two participants in the BrainGate2 pilot clinical trial made cortically controlled cursor movements with a linear velocity decoder and acquired targets by dwelling on them. We investigated whether the movement times were well described by Fitts' law. MAIN RESULTS We found that movement times were better described by the equation [Formula: see text], which captures how movement time increases sharply as the target radius becomes smaller, independently of distance. In contrast to able-bodied movements, the iBCI movements we studied had a low dynamic range of accuracy (absence of logarithmic proportionality) and were sensitive to the absolute scale of the task (small targets had long movement times regardless of the [Formula: see text] ratio). We argue that this relationship emerges due to noise in the decoder output whose magnitude is largely independent of the user's motor command (signal-independent noise). Signal-independent noise creates a baseline level of variability that cannot be decreased by trying to move slowly or hold still, making targets below a certain size very hard to acquire with a standard decoder. SIGNIFICANCE The results give new insight into how iBCI movements currently differ from able-bodied movements and suggest that restoring a Fitts' law-like relationship to iBCI movements may require non-linear decoding strategies.
Collapse
Affiliation(s)
- Francis R Willett
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America. Louis Stokes Cleveland Department of Veterans Affairs Medical Center, FES Center of Excellence, Rehab. R&D Service, Cleveland, OH, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Yang Y, Song R. Difficulty-dependent trajectory planning during target-reaching movements. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:6675-8. [PMID: 26737824 DOI: 10.1109/embc.2015.7319924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study explored how the difficulty of a task influenced motor control during target-reaching movements. During the experiment, twelve healthy subjects were recruited to perform target-reaching tasks with three different target sizes over three distances as quickly and accurately as possible using their index fingers. There were nine levels of difficulty of the tasks, with a combination of three target sizes and three distances, and the difficulty of the tasks could be measured by Fitts' law in terms of the index of difficulty (ID). The kinematic variables to represent movement performance were peak velocity (Vpeak), percentage time to peak velocity (PTPV), normalized jerk score (NJS) and fApEn (fuzzy approximate entropy). The results showed both distance and target size significantly influenced these parameters with the exception of the effect of the target size on Vpeak. Vpeak and fApEn were only linearly related to the ID when the individual target size across movement distances was considered. And a linear relationship between PTPV or NJS and ID was found. The increase in the difficulty of the task could lead to a shift from feedforward to feedback control by the central nerve system. The findings in this study contribute to an understanding of the underlying motor control during target reaching movements and can be applied as a quantitative method of evaluation in the clinic in the future.
Collapse
|
12
|
Michmizos KP, Rossi S, Castelli E, Cappa P, Krebs HI. Robot-Aided Neurorehabilitation: A Pediatric Robot for Ankle Rehabilitation. IEEE Trans Neural Syst Rehabil Eng 2015; 23:1056-67. [PMID: 25769168 DOI: 10.1109/tnsre.2015.2410773] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This paper presents the pediAnklebot, an impedance-controlled low-friction, backdriveable robotic device developed at the Massachusetts Institute of Technology that trains the ankle of neurologically impaired children of ages 6-10 years old. The design attempts to overcome the known limitations of the lower extremity robotics and the unknown difficulties of what constitutes an appropriate therapeutic interaction with children. The robot's pilot clinical evaluation is on-going and it incorporates our recent findings on the ankle sensorimotor control in neurologically intact subjects, namely the speed-accuracy tradeoff, the deviation from an ideally smooth ankle trajectory, and the reaction time. We used these concepts to develop the kinematic and kinetic performance metrics that guided the ankle therapy in a similar fashion that we have done for our upper extremity devices. Here we report on the use of the device in at least nine training sessions for three neurologically impaired children. Results demonstrated a statistically significant improvement in the performance metrics assessing explicit and implicit motor learning. Based on these initial results, we are confident that the device will become an effective tool that harnesses plasticity to guide habilitation during childhood.
Collapse
|
13
|
Michmizos KP, Vaisman L, Krebs HI. A Comparative Analysis of Speed Profile Models for Ankle Pointing Movements: Evidence that Lower and Upper Extremity Discrete Movements are Controlled by a Single Invariant Strategy. Front Hum Neurosci 2014; 8:962. [PMID: 25505881 PMCID: PMC4245889 DOI: 10.3389/fnhum.2014.00962] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 11/12/2014] [Indexed: 12/19/2022] Open
Abstract
Little is known about whether our knowledge of how the central nervous system controls the upper extremities (UE), can generalize, and to what extent to the lower limbs. Our continuous efforts to design the ideal adaptive robotic therapy for the lower limbs of stroke patients and children with cerebral palsy highlighted the importance of analyzing and modeling the kinematics of the lower limbs, in general, and those of the ankle joints, in particular. We recruited 15 young healthy adults that performed in total 1,386 visually evoked, visually guided, and target-directed discrete pointing movements with their ankle in dorsal-plantar and inversion-eversion directions. Using a non-linear, least-squares error-minimization procedure, we estimated the parameters for 19 models, which were initially designed to capture the dynamics of upper limb movements of various complexity. We validated our models based on their ability to reconstruct the experimental data. Our results suggest a remarkable similarity between the top-performing models that described the speed profiles of ankle pointing movements and the ones previously found for the UE both during arm reaching and wrist pointing movements. Among the top performers were the support-bounded lognormal and the beta models that have a neurophysiological basis and have been successfully used in upper extremity studies with normal subjects and patients. Our findings suggest that the same model can be applied to different "human" hardware, perhaps revealing a key invariant in human motor control. These findings have a great potential to enhance our rehabilitation efforts in any population with lower extremity deficits by, for example, assessing the level of motor impairment and improvement as well as informing the design of control algorithms for therapeutic ankle robots.
Collapse
Affiliation(s)
- Konstantinos P. Michmizos
- Martinos Center for Biomedical Imaging, Massachusetts Institute of Technology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lev Vaisman
- Department of Anatomy and Neurobiology, School of Medicine, Boston University, Boston, MA, USA
| | - Hermano Igo Krebs
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Neurology, Division of Rehabilitation, School of Medicine, University of Maryland, College Park, MD, USA
- Department of Physical Medicine and Rehabilitation, Fujita Health University, Nagoya, Japan
- Institute of Neuroscience, University of Newcastle, Newcastle upon Tyne, UK
| |
Collapse
|
14
|
Michmizos KP, Krebs HI. Reaction time in ankle movements: a diffusion model analysis. Exp Brain Res 2014; 232:3475-88. [PMID: 25030966 DOI: 10.1007/s00221-014-4032-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 06/30/2014] [Indexed: 11/24/2022]
Abstract
Reaction time (RT) is one of the most commonly used measures of neurological function and dysfunction. Despite the extensive studies on it, no study has ever examined the RT in the ankle. Twenty-two subjects were recruited to perform simple, 2- and 4-choice RT tasks by visually guiding a cursor inside a rectangular target with their ankle. RT did not change with spatial accuracy constraints imposed by different target widths in the direction of the movement. RT increased as a linear function of potential target stimuli, as would be predicted by Hick-Hyman law. Although the slopes of the regressions were similar, the intercept in dorsal-plantar (DP) direction was significantly smaller than the intercept in inversion-eversion (IE) direction. To explain this difference, we used a hierarchical Bayesian estimation of the Ratcliff's (Psychol Rev 85:59, 1978) diffusion model parameters and divided processing time into cognitive components. The model gave a good account of RTs, their distribution and accuracy values, and hence provided a testimony that the non-decision processing time (overlap of posterior distributions between DP and IE < 0.045), the boundary separation (overlap of the posterior distributions < 0.1) and the evidence accumulation rate (overlap of the posterior distributions < 0.01) components of the RT accounted for the intercept difference between DP and IE. The model also proposed that there was no systematic change in non-decision processing time or drift rate when spatial accuracy constraints were altered. The results were in agreement with the memory drum hypothesis and could be further justified neurophysiologically by the larger innervation of the muscles controlling DP movements. This study might contribute to assessing deficits in sensorimotor control of the ankle and enlighten a possible target for correction in the framework of our on-going effort to develop robotic therapeutic interventions to the ankle of children with cerebral palsy.
Collapse
Affiliation(s)
- Konstantinos P Michmizos
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA, USA,
| | | |
Collapse
|