1
|
Long KH, McLellan KR, Boyarinova M, Bensmaia SJ. Proprioceptive sensitivity to imposed finger deflections. J Neurophysiol 2022; 127:412-420. [PMID: 35020504 PMCID: PMC8799383 DOI: 10.1152/jn.00513.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Hand proprioception, the sense of the posture and movements of the wrist and digits, is critical to dexterous manual behavior and to stereognosis, the ability to sense the three-dimensional structure of objects held in the hand. To better understand this sensory modality and its role in hand function, we sought to characterize the acuity with which the postures and movements of finger joints are sensed. To this end, we measured the ability of human subjects to discriminate changes in posture and speed around the three joints of the index finger. In these experiments, we isolated the sensory component by imposing the postures on an otherwise still hand, to complement other studies in which subjects made judgments on actively achieved postures. We found that subjects could reliably sense 12-16% changes in joint angle and 18-32% changes in joint speed. Furthermore, the acuity for posture and speed was comparable across the three joints of the finger. Finally, task performance was unaffected by the presence of a vibratory stimulus, calling into question the role of cutaneous cues in hand proprioception.NEW & NOTEWORTHY Manual dexterity and stereognosis are supported by two exquisite sensory systems, namely touch and proprioception. Here, we measure the sensitivity of hand proprioception and show that humans can sense the posture and movements of the fingers with great accuracy. We also show that application of a skin vibration does not impair sensitivity, suggesting that proprioceptive acuity relies primarily on receptors in the muscles (and possibly tendons) rather than the skin.
Collapse
Affiliation(s)
- Katie H. Long
- 1Committee on Computational Neuroscience, University of Chicago, Chicago, Illinois,4Medical Scientist Training Program, University of Chicago, Chicago, Illinois
| | - Kristine R. McLellan
- 2Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois
| | - Maria Boyarinova
- 2Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois
| | - Sliman J. Bensmaia
- 1Committee on Computational Neuroscience, University of Chicago, Chicago, Illinois,2Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois,3Grossman Institute for Neuroscience, Quantitative Biology, and Human Behavior, University of Chicago, Chicago, Illinois
| |
Collapse
|
2
|
Gaze direction influences grasping actions towards unseen, haptically explored, objects. Sci Rep 2020; 10:15774. [PMID: 32978418 PMCID: PMC7519081 DOI: 10.1038/s41598-020-72554-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/04/2020] [Indexed: 11/25/2022] Open
Abstract
Haptic exploration produces mental object representations that can be memorized for subsequent object-directed behaviour. Storage of haptically-acquired object images (HOIs), engages, besides canonical somatosensory areas, the early visual cortex (EVC). Clear evidence for a causal contribution of EVC to HOI representation is still lacking. The use of visual information by the grasping system undergoes necessarily a frame of reference shift by integrating eye-position. We hypothesize that if the motor system uses HOIs stored in a retinotopic coding in the visual cortex, then its use is likely to depend at least in part on eye position. We measured the kinematics of 4 fingers in the right hand of 15 healthy participants during the task of grasping different unseen objects behind an opaque panel, that had been previously explored haptically. The participants never saw the object and operated exclusively based on haptic information. The position of the object was fixed, in front of the participant, but the subject’s gaze varied from trial to trial between 3 possible positions, towards the unseen object or away from it, on either side. Results showed that the middle and little fingers’ kinematics during reaching for the unseen object changed significantly according to gaze position. In a control experiment we showed that intransitive hand movements were not modulated by gaze direction. Manipulating eye-position produces small but significant configuration errors, (behavioural errors due to shifts in frame of reference) possibly related to an eye-centered frame of reference, despite the absence of visual information, indicating sharing of resources between the haptic and the visual/oculomotor system to delayed haptic grasping.
Collapse
|
3
|
Singh S, Mandziak A, Barr K, Blackwell AA, Mohajerani MH, Wallace DG, Whishaw IQ. Human string-pulling with and without a string: movement, sensory control, and memory. Exp Brain Res 2019; 237:3431-3447. [DOI: 10.1007/s00221-019-05684-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 11/07/2019] [Indexed: 01/04/2023]
|
4
|
Karl JM, Slack BM, Wilson AM, Wilson CA, Bertoli ME. Increasing task precision demands reveals that the reach and grasp remain subject to different perception-action constraints in 12-month-old human infants. Infant Behav Dev 2019; 57:101382. [PMID: 31580995 DOI: 10.1016/j.infbeh.2019.101382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/29/2019] [Accepted: 09/16/2019] [Indexed: 11/19/2022]
Abstract
The reach and grasp follow different developmental trajectories, but are often considered to have achieved nearly adult-like precision and integration by 12 months of age. This study used frame-by-frame video analysis to investigate whether increasing precision demands, by placing small reaching targets on a narrow pedestal rather than on a flat table, would influence the reach and grasp movements of 12-month-old infants in a complementary or differential fashion. The results reveal that placing the target atop a pedestal impaired the infants's ability to direct an appropriate digit towards the small target, but did not produce a corresponding decrease in the frequency with which they used an index-thumb pincer grip to grasp the target. This was due to the fact that, although infants were more likely to contact the target with a suboptimal part of the hand in the pedestal condition, a greater proportion of these suboptimal contacts ultimately transitioned to a successful index-thumb pincer grip. Thus, increasing task precision demands impaired reach accuracy, but facilitated index-thumb grip formation, in 12-month-old infants. The differential response of the reach and grasp to the increased precision demands of the pedestal condition suggests that the two movements are not fully integrated and, when precision demands are great, remain sensitive to different perception-action constraints in 12-month-old infants.
Collapse
Affiliation(s)
- Jenni M Karl
- Department of Psychology, Thompson Rivers University, Kamloops, BC, Canada.
| | - Braydon M Slack
- Department of Psychology, Thompson Rivers University, Kamloops, BC, Canada
| | - Alexis M Wilson
- Department of Psychology, Thompson Rivers University, Kamloops, BC, Canada
| | | | - Marisa E Bertoli
- Department of Psychology, Thompson Rivers University, Kamloops, BC, Canada
| |
Collapse
|
5
|
Karl JM, Wilson AM, Bertoli ME, Shubear NS. Touch the table before the target: contact with an underlying surface may assist the development of precise visually controlled reach and grasp movements in human infants. Exp Brain Res 2018; 236:2185-2207. [PMID: 29797280 DOI: 10.1007/s00221-018-5293-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 05/16/2018] [Indexed: 11/28/2022]
Abstract
Multiple motor channel theory posits that skilled hand movements arise from the coordinated activation of separable neural circuits in parietofrontal cortex, each of which produces a distinct movement and responds to different sensory inputs. Prehension, the act of reaching to grasp an object, consists of at least two movements: a reach movement that transports the hand to a target location and a grasp movement that shapes and closes the hand for target acquisition. During early development, discrete pre-reach and pre-grasp movements are refined based on proprioceptive and tactile feedback, but are gradually coordinated together into a singular hand preshaping movement under feedforward visual control. The neural and behavioural factors that enable this transition are currently unknown. In an attempt to identify such factors, the present descriptive study used frame-by-frame video analysis to examine 9-, 12-, and 15-month-old infants, along with sighted and unsighted adults, as they reached to grasp small ring-shaped pieces of cereal (Cheerios) resting on a table. Compared to sighted adults, infants and unsighted adults were more likely to make initial contact with the underlying table before they contacted the target. The way in which they did so was also similar in that they generally contacted the table with the tip of the thumb and/or pinky finger, a relatively open hand, and poor reach accuracy. Despite this, infants were similar to sighted adults in that they tended to use a pincer digit, defined as the tip of the thumb or index finger, to subsequently contact the target. Only in infants was this ability related to their having made prior contact with the underlying table. The results are discussed in relation to the idea that initial contact with an underlying table or surface may assist infants in learning to use feedforward visual control to direct their digits towards a precise visual target.
Collapse
Affiliation(s)
- Jenni M Karl
- Department of Psychology, Thompson Rivers University, 805 TRU Way, Kamloops, BC, V2C 0C8, Canada.
| | - Alexis M Wilson
- Department of Psychology, Thompson Rivers University, 805 TRU Way, Kamloops, BC, V2C 0C8, Canada
| | - Marisa E Bertoli
- Department of Psychology, Thompson Rivers University, 805 TRU Way, Kamloops, BC, V2C 0C8, Canada
| | - Noor S Shubear
- Department of Psychology, Thompson Rivers University, 805 TRU Way, Kamloops, BC, V2C 0C8, Canada
| |
Collapse
|
6
|
Kuntz JR, Karl JM, Doan JB, Whishaw IQ. Gaze anchoring guides real but not pantomime reach-to-grasp: support for the action–perception theory. Exp Brain Res 2018; 236:1091-1103. [DOI: 10.1007/s00221-018-5196-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/02/2018] [Indexed: 10/18/2022]
|
7
|
Karl JM, Kuntz JR, Lenhart LA, Whishaw IQ. Frame-by-Frame Video Analysis of Idiosyncratic Reach-to-Grasp Movements in Humans. J Vis Exp 2018. [PMID: 29364272 DOI: 10.3791/56733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Prehension, the act of reaching to grasp an object, is central to the human experience. We use it to feed ourselves, groom ourselves, and manipulate objects and tools in our environment. Such behaviors are impaired by many sensorimotor disorders, yet our current understanding of their neural control is far from complete. Current technologies for investigating human reach-to-grasp movements often utilize motion tracking systems that can be expensive, require the attachment of markers or sensors to the hands, impede natural movement and sensory feedback, and provide kinematic output that can be difficult to interpret. While generally effective for studying the stereotypical reach-to-grasp movements of healthy sighted adults, many of these technologies face additional limitations when attempting to study the unpredictable and idiosyncratic reach-to-grasp movements of young infants, unsighted adults, and patients with neurological disorders. Thus, we present a novel, inexpensive, and highly reliable yet flexible protocol for quantifying the temporal and kinematic structure of idiosyncratic reach-to-grasp movements in humans. High speed video cameras capture multiple views of the reach-to-grasp movement. Frame-by-frame video analysis is then used to document the timing and magnitude of pre-defined behavioral events such as movement start, collection, maximum height, peak aperture, first contact, and final grasp. The temporal structure of the movement is reconstructed by documenting the relative frame number of each event while the kinematic structure of the hand is quantified using the ruler or measure function in photo editing software to calibrate 2 dimensional linear distances between two body parts or between a body part and the target. Frame-by-frame video analysis can provide a quantitative and comprehensive description of idiosyncratic reach-to-grasp movements and will enable researchers to expand their area of investigation to include a greater range of naturalistic prehensile behaviors, guided by a wider variety of sensory modalities, in both healthy and clinical populations.
Collapse
Affiliation(s)
- Jenni M Karl
- Department of Psychology, Thompson Rivers University;
| | | | | | - Ian Q Whishaw
- Department of Neuroscience, University of Lethbridge
| |
Collapse
|
8
|
Organization of the reach and grasp in head-fixed vs freely-moving mice provides support for multiple motor channel theory of neocortical organization. Exp Brain Res 2017; 235:1919-1932. [DOI: 10.1007/s00221-017-4925-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/16/2017] [Indexed: 11/30/2022]
|
9
|
Synchrony of the Reach and the Grasp in pantomime reach-to-grasp. Exp Brain Res 2016; 234:3291-3303. [DOI: 10.1007/s00221-016-4727-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/09/2016] [Indexed: 11/25/2022]
|
10
|
Whishaw IQ, Karl JM, Humphrey NK. Dissociation of the Reach and the Grasp in the destriate (V1) monkey Helen: a new anatomy for the dual visuomotor channel theory of reaching. Exp Brain Res 2016; 234:2351-62. [DOI: 10.1007/s00221-016-4640-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/24/2016] [Indexed: 11/25/2022]
|
11
|
Thomas BL, Karl JM, Whishaw IQ. Independent development of the Reach and the Grasp in spontaneous self-touching by human infants in the first 6 months. Front Psychol 2015; 5:1526. [PMID: 25620939 DOI: 10.3389/fpsyg.2014.01526] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 12/10/2014] [Indexed: 11/13/2022] Open
Abstract
The Dual Visuomotor Channel Theory proposes that visually guided reaching is a composite of two movements, a Reach that advances the hand to contact the target and a Grasp that shapes the digits for target purchase. The theory is supported by biometric analyses of adult reaching, evolutionary contrasts, and differential developmental patterns for the Reach and the Grasp in visually guided reaching in human infants. The present ethological study asked whether there is evidence for a dissociated development for the Reach and the Grasp in nonvisual hand use in very early infancy. The study documents a rich array of spontaneous self-touching behavior in infants during the first 6 months of life and subjected the Reach movements to an analysis in relation to body target, contact type, and Grasp. Video recordings were made of resting alert infants biweekly from birth to 6 months. In younger infants, self-touching targets included the head and trunk. As infants aged, targets became more caudal and included the hips, then legs, and eventually the feet. In younger infants hand contact was mainly made with the dorsum of the hand, but as infants aged, contacts included palmar contacts and eventually grasp and manipulation contacts with the body and clothes. The relative incidence of caudal contacts and palmar contacts increased concurrently and were significantly correlated throughout the period of study. Developmental increases in self-grasping contacts occurred a few weeks after the increase in caudal and palmar contacts. The behavioral and temporal pattern of these spontaneous self-touching movements suggest that the Reach, in which the hand extends to make a palmar self-contact, and the Grasp, in which the digits close and make manipulatory movements, have partially independent developmental profiles. The results additionally suggest that self-touching behavior is an important developmental phase that allows the coordination of the Reach and the Grasp prior to and concurrent with their use under visual guidance.
Collapse
Affiliation(s)
- Brittany L Thomas
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge Lethbridge, AB, Canada
| | - Jenni M Karl
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge Lethbridge, AB, Canada
| | - Ian Q Whishaw
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge Lethbridge, AB, Canada
| |
Collapse
|
12
|
Karl JM, Whishaw IQ. Haptic grasping configurations in early infancy reveal different developmental profiles for visual guidance of the Reach versus the Grasp. Exp Brain Res 2014; 232:3301-16. [DOI: 10.1007/s00221-014-4013-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 06/06/2014] [Indexed: 10/25/2022]
|