1
|
Elizabeth A, Adegbuyi A, Olusegun A, Benneth BA, Anthony E, Abayomi A, Solomon U. Morin hydrate attenuates chronic stress-induced memory impairment and degeneration of hippocampal subfields in mice: The role of oxidative, nitrergic and neuroinflammatory pathways. Metab Brain Dis 2020; 35:1145-1156. [PMID: 32653975 DOI: 10.1007/s11011-020-00595-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/29/2020] [Indexed: 12/16/2022]
Abstract
Morin hydrate (MH) is the major flavonoid constituent of Morus alba acclaimed to have antioxidant, anti-inflammatory, anti-stress and neuroprotective properties. However, report on the effect of MH on memory performance and the underlying mechanism following chronic stress exposure is lacking. The current study aimed at investigating the neuroprotective effect of MH on chronic unpredictable stress (CUS)-induced memory impairment in mice using the Y maze test. Mice were subjected to unpredicted stress for 14 days, during which MH (5, 10 and 20 mg/kg i.p) or 25 mg/kg Ginseng was administered to them. On the 14th day, 1 h after treatment, learning and memory deficit was evaluated using the Y maze test and thereafter brains were harvested for the estimation of glutathione (GSH), lipid peroxidation product; malondialdehyde (MDA) and nitrite. Levels of inflammatory mediators tumor necrosis factor-alpha (TNF-α) and interleukin1-beta (IL-1β), inducible nitric oxide synthase (iNOS) and nuclear factor-kappa B (NF-кB) expressions were also determined. The hippocampus was stained with hematoxylin-eosin (H&E) to examine any morphological changes in the neurons. Mice exposed to CUS showed evidence of impaired memory and increase levels of MDA, nitrite, TNF-α and IL-1β. Furthermore, CUS reduced GSH level, increased the expressions of iNOS and NFкB immune-positive cells and produced loss of neuronal cells in the hippocampus. The MH treatment however improved memory, reduced MDA and nitrite levels, and enhanced brain GSH levels in CUS-mice. Besides, MH reduced brain levels of TNF-α and IL-1β levels, down regulated the expressions of iNOS and NF-кB and rescue neurons in the hippocampal CA3 region of mice exposed to CUS. The results of the study indicate that MH improved CUS-induced memory impairment, which may be related to its ability to boost antioxidant defense system and suppress neuroinflammatory pathways.
Collapse
Affiliation(s)
- Akinluyi Elizabeth
- Department of Pharmacology and Therapeutics, College of Medicine and Health sciences, Afe Babalola University, Ado- Ekiti, Nigeria.
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria.
| | - Aderibigbe Adegbuyi
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Adeoluwa Olusegun
- Department of Pharmacology and Therapeutics, College of Medicine and Health sciences, Afe Babalola University, Ado- Ekiti, Nigeria
| | - Ben-Azu Benneth
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
- Department of Pharmacology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port Harcourt, Rivers State, Nigeria
| | - Eduviere Anthony
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Ajayi Abayomi
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Umukoro Solomon
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
2
|
Nasoohi S, Parveen K, Ishrat T. Metabolic Syndrome, Brain Insulin Resistance, and Alzheimer's Disease: Thioredoxin Interacting Protein (TXNIP) and Inflammasome as Core Amplifiers. J Alzheimers Dis 2019; 66:857-885. [PMID: 30372683 DOI: 10.3233/jad-180735] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Empirical evidence indicates a strong association between insulin resistance and pathological alterations related to Alzheimer's disease (AD) in different cerebral regions. While cerebral insulin resistance is not essentially parallel with systemic metabolic derangements, type 2 diabetes mellitus (T2DM) has been established as a risk factor for AD. The circulating "toxic metabolites" emerging in metabolic syndrome may engage several biochemical pathways to promote oxidative stress and neuroinflammation leading to impair insulin function in the brain or "type 3 diabetes". Thioredoxin-interacting protein (TXNIP) as an intracellular amplifier of oxidative stress and inflammasome activation may presumably mediate central insulin resistance. Emerging data including those from our recent studies has demonstrated a sharp TXNIP upregulation in stroke, aging and AD and well underlining the significance of this hypothesis. With the main interest to illustrate TXNIP place in type 3 diabetes, the present review primarily briefs the potential mechanisms contributing to cerebral insulin resistance in a metabolically deranged environment. Then with a particular focus on plausible TXNIP functions to drive and associate with AD pathology, we present the most recent evidence supporting TXNIP as a promising therapeutic target in AD as an age-associated dementia.
Collapse
|
3
|
Iloun P, Abbasnejad Z, Janahmadi M, Ahmadiani A, Ghasemi R. Investigating the role of P38, JNK and ERK in LPS induced hippocampal insulin resistance and spatial memory impairment: effects of insulin treatment. EXCLI JOURNAL 2018; 17:825-839. [PMID: 30233281 PMCID: PMC6141830 DOI: 10.17179/excli2018-1387] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/13/2018] [Indexed: 12/16/2022]
Abstract
Despite the consensus that neuro-inflammation and insulin resistance (IR) are two hallmarks of Alzheimer disease (AD), the molecular mechanisms responsible for the development of IR remain uncharacterized. MAPKs are signaling molecules that are implicated in the pathology of AD and have a role in IR development. Given that inflammatory mediators are shown to interfere with insulin signaling pathway in different cell types, the present work aimed to investigate whether neuro-inflammation induced memory loss is associated with hippocampal IR and whether insulin treatment protects against this IR. Subsequently, possible roles of MAPKs in this situation were investigated. Male Wistar rats were cannulated, and LPS (15 µg, day 0), insulin (3 mU) or saline (vehicle) were administered intra-cerebroventricularly (ICV) (days 1-6). Spatial memory performance was assessed during days 7-10 by Morris Water Maze test. Consequently, analysis of the amount of hippocampal phosphorylated forms of P38, JNK, ERK, IRS1 (ser307) and Akt (ser473) were done by Western blot. The outcomes indicated that while LPS induced memory loss and hippocampal IR (shown by elevated IRS1 and decreased Akt phosphorylation), insulin treatment nullified these effects. Molecular results also showed that LPS mediated IR and memory loss are associated with P38 but not JNK and ERK activation; this P38 activation was reversed by insulin treatment. These observations implied that one of the ways by which neuro-inflammation participates in AD is via induction of IR. It seems that this IR is mainly mediated by P38. Therefore, P38 could be considered as a molecular target for preventing IR development.
Collapse
Affiliation(s)
- Parisa Iloun
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Abbasnejad
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahyar Janahmadi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Ghasemi
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Nikseresht S, Khodagholi F, Dargahi L, Ahmadiani A. Necroptosis Resumes Apoptosis in Hippocampus but Not in Frontal Cortex. J Cell Biochem 2017; 118:4628-4638. [DOI: 10.1002/jcb.26127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/08/2017] [Indexed: 02/02/2023]
Affiliation(s)
- Sara Nikseresht
- Neuroscience Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Fariba Khodagholi
- Neuroscience Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Leila Dargahi
- Neurobiology Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Abolhassan Ahmadiani
- Neuroscience Research CenterShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
5
|
Mehta V, Parashar A, Udayabanu M. Quercetin prevents chronic unpredictable stress induced behavioral dysfunction in mice by alleviating hippocampal oxidative and inflammatory stress. Physiol Behav 2017; 171:69-78. [DOI: 10.1016/j.physbeh.2017.01.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/29/2016] [Accepted: 01/04/2017] [Indexed: 12/20/2022]
|
6
|
Wu H, Wang X, Gao J, Liang S, Hao Y, Sun C, Xia W, Cao Y, Wu L. Fingolimod (FTY720) attenuates social deficits, learning and memory impairments, neuronal loss and neuroinflammation in the rat model of autism. Life Sci 2017; 173:43-54. [PMID: 28161158 DOI: 10.1016/j.lfs.2017.01.012] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/23/2017] [Accepted: 01/30/2017] [Indexed: 10/20/2022]
Abstract
AIMS To investigate the effect of FTY720 on the valproic acid (VPA) rat model of autism. MAIN METHODS As an animal model of autism, we used intraperitoneal injection of VPA on embryonic day 12.5 in Wistar rats. The pups were given FTY720 orally at doses of 0.25, 0.5 and 1mg/kg daily from postnatal day 15 to 35. Social behavior, spatial learning and memory were assessed at the end of FTY720 treatment. The histological change, oxidative stress, neuroinflammatory responses, and apoptosis-related proteins in the hippocampus were evaluated. KEY FINDINGS FTY720 (1mg/kg) administration to VPA-exposed rats (1) improved social behavior, spatial learning and memory impairment; (2) resulted in a reduction in neuronal loss and apoptosis of pyramidal cells in hippocampal CA1 regions; (3) inhibited activation of microglial cells, in turn lowering the level of pro-inflammatory cytokines interleukin-1β (IL-1β) and IL-6 in the hippocampus; (4) changed Malondialdehyde (MDA) levels, Glutathione (GSH) levels, superoxide dismutase (SOD) activity and Glutathione Peroxidase (GSH-Px) activity in the hippocampus; (6) inhibited the elevated Bax and caspase-3 protein levels and enhanced the relative expression level of Bcl-2 in the hippocampus; and (7) increased phospho-Ca2+/calmodulin-dependent protein kinase II (p-CaMKII), phospho-cAMP-response element binding protein (p-CREB) and Brain Derived Neurotrophic Factor (BDNF) protein expression in the hippocampus. SIGNIFICANCE FTY720 rescues social deficit, spatial learning and memory impairment in VPA-exposed rats. FTY720 exerts both a direct protection for neurons and an indirect modulation of inflammation-mediated neuron loss as a possible mechanism of neuroprotection.
Collapse
Affiliation(s)
- Hongmei Wu
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Xuelai Wang
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Jingquan Gao
- Department of Nursing, Harbin Medical University in Daqing, Daqing, Heilongjiang 163319, China
| | - Shuang Liang
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yanqiu Hao
- Department of pediatrics, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Caihong Sun
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Wei Xia
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yonggang Cao
- Department of Pharmacology, Harbin Medical University in Daqing, Daqing, Heilongjiang 163319, China.
| | - Lijie Wu
- Department of Child and Adolescent Health, School of Public Health, Harbin Medical University, Harbin, Heilongjiang 150081, China.
| |
Collapse
|
7
|
Li W, Xu H, Testai FD. Mechanism of Action and Clinical Potential of Fingolimod for the Treatment of Stroke. Front Neurol 2016; 7:139. [PMID: 27617002 PMCID: PMC4999895 DOI: 10.3389/fneur.2016.00139] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/15/2016] [Indexed: 01/23/2023] Open
Abstract
Fingolimod (FTY720) is an orally bio-available immunomodulatory drug currently approved by the FDA for the treatment of multiple sclerosis. Currently, there is a significant interest in the potential benefits of FTY720 on stroke outcomes. FTY720 and the sphingolipid signaling pathway it modulates has a ubiquitous presence in the central nervous system and both rodent models and pilot clinical trials seem to indicate that the drug may improve overall functional recovery in different stroke subtypes. Although the precise mechanisms behind these beneficial effects are yet unclear, there is evidence that FTY720 has a role in regulating cerebrovascular responses, blood-brain barrier permeability, and cell survival in the event of cerebrovascular insult. In this article, we critically review the data obtained from the latest laboratory findings and clinical trials involving both ischemic and hemorrhagic stroke, and attempt to form a cohesive picture of FTY720's mechanisms of action in stroke.
Collapse
Affiliation(s)
- Wentao Li
- Department of Neurology and Rehabilitation, University of Illinois College of Medicine , Chicago, IL , USA
| | - Haoliang Xu
- Department of Pathology, University of Illinois College of Medicine , Chicago, IL , USA
| | - Fernando D Testai
- Department of Neurology and Rehabilitation, University of Illinois College of Medicine , Chicago, IL , USA
| |
Collapse
|
8
|
Efstathopoulos P, Kourgiantaki A, Karali K, Sidiropoulou K, Margioris AN, Gravanis A, Charalampopoulos I. Fingolimod induces neurogenesis in adult mouse hippocampus and improves contextual fear memory. Transl Psychiatry 2015; 5:e685. [PMID: 26795749 PMCID: PMC5545691 DOI: 10.1038/tp.2015.179] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 09/28/2015] [Accepted: 10/02/2015] [Indexed: 12/15/2022] Open
Abstract
Fingolimod (FTY720) was the first per os administered disease-modifying agent approved for the treatment of relapsing-remitting multiple sclerosis. It is thought that fingolimod modulates the immune response by activating sphingosine-1 phosphate receptor type 1 (S1P1) on lymphocytes following its in vivo phosphorylation. In addition to its immune-related effects, there is evidence that fingolimod exerts several other effects in the central nervous system, including regulation of the proliferation, survival and differentiation of various cell types and their precursors. In the present study, we have investigated the effect of fingolimod on the production of new neurons in the adult mouse hippocampus and the association of this effect with the ability for pattern separation, an established adult neurogenesis-dependent memory function. Immunofluorescence analysis after chronic administration of a physiologic dose of fingolimod (0.3 mg kg(-1)) revealed a significant increase in both the proliferation and the survival of neural progenitors in the area of dentate gyrus of hippocampus, compared with control animals. These effects were replicated in vitro, in cultures of murine hippocampal neural stem/precursor cells that express S1P1 receptor, suggesting cell-autonomous actions. The effects of fingolimod on neurogenesis were correlated to enhanced ability for context discrimination after fear conditioning. Since impairment of adult hippocampal neurogenesis and memory is a common feature of many neuropsychiatric conditions, fingolimod treatment may be beneficial in therapeutic armamentarium of these disorders.
Collapse
Affiliation(s)
- P Efstathopoulos
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, Greece,Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology-Hellas (IMBB-FORTH), Heraklion, Greece
| | - A Kourgiantaki
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, Greece,Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology-Hellas (IMBB-FORTH), Heraklion, Greece
| | - K Karali
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, Greece,Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology-Hellas (IMBB-FORTH), Heraklion, Greece
| | - K Sidiropoulou
- Department of Biology, University of Crete, Heraklion, Greece
| | - A N Margioris
- Department of Clinical Chemistry, School of Medicine, University of Crete, Heraklion, Greece
| | - A Gravanis
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, Greece,Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology-Hellas (IMBB-FORTH), Heraklion, Greece
| | - I Charalampopoulos
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, Greece,Department of Pharmacology, School of Medicine, University of Crete, Stavrakia Voutes, Heraklion, Crete, GR-71003, Greece. E-mail:
| |
Collapse
|
9
|
Nikseresht S, Khodagholi F, Nategh M, Dargahi L. RIP1 Inhibition Rescues from LPS-Induced RIP3-Mediated Programmed Cell Death, Distributed Energy Metabolism and Spatial Memory Impairment. J Mol Neurosci 2015; 57:219-30. [PMID: 26156201 DOI: 10.1007/s12031-015-0609-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 06/23/2015] [Indexed: 12/29/2022]
Abstract
Receptor interacting protein 1 (RIP1) has a critical role in initiation of programmed necrosis or necroptosis. RIP1 in a close collaboration with RIP3 not only mediates necroptosis but also is involved in apoptosis and inflammatory signaling. However, the interpretation of the distinct function of RIP1 and RIP3 is complicated. Herein, we demonstrated that RIP1 inhibition in the context of LPS-induced neuroinflammation decreases RIP3 expression. Concomitant administration of Nec-1, specific inhibitor of RIP1, with LPS also attenuated the activating effect of RIP3 on metabolic enzymes, glutamate-ammonia ligase and glutamate dehydrogenase as bioenergetic determinants, in hippocampal and cortical cells. RIP1 inhibition possessed an anti-inflammatory effect and improved the antioxidant capacity against LPS. Interestingly, and opposed to some reports that necroptosis inhibition sensitizes cells to apoptosis, our results showed that RIP1 inhibition attenuates apoptotic cell death in response to LPS. The survival of neuronal function was also confirmed by measuring spontaneous alternations of rats in Y-maze. In conclusion, effects of RIP1 inhibition on RIP3 and cell death provide new approaches to ameliorate neuroinflammation and relative disorders.
Collapse
Affiliation(s)
- Sara Nikseresht
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Nategh
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- NeuroBiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|