1
|
Filippini HF, Molska GR, Zanjir M, Arudchelvan Y, Gong SG, Campos MM, Avivi-Arber L, Sessle BJ. Toll-Like Receptor 4 in the Rat Caudal Medulla Mediates Tooth Pulp Inflammatory Pain. Front Neurosci 2020; 14:643. [PMID: 32655361 PMCID: PMC7324534 DOI: 10.3389/fnins.2020.00643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 05/25/2020] [Indexed: 12/20/2022] Open
Abstract
The aims of this study were to investigate if Toll-like receptor 4 (TLR4) is expressed in the medullary dorsal horn (MDH) and if medullary application of a TLR4 antagonist (lipopolysaccharides from Rhodobacter sphaeroides, LPS-RS) can attenuate changes in nociceptive sensorimotor responses or TLR4 expression that might be evoked by mustard oil (MO) application to the right maxillary first molar tooth pulp. Of 41 adult male Sprague-Dawley rats used in the study, 23 received intrathecal application of the TLR4 antagonist LPS-RS (25 μg/10 μl; LPS-RS group) or isotonic saline (10 μl; vehicle control group) 10 min before pulpal application of MO (95%; 0.2 μl). Bilateral electromyographic (EMG) activities of the anterior digastric and masseter muscles were recorded continuously before and until 15 min after the MO application to the pulp. In 6 of these 23 rats and an additional 18 rats, the caudal medulla containing the ipsilateral and contralateral MDH was removed after euthanasia for subsequent Western Blot analysis of TLR4 expression in LPS-RS (n = 8) and vehicle (n = 8) groups and a naïve group (n = 8). The % change from baseline in the MO-evoked EMG activities within the anterior digastric muscles were significantly smaller in the LPS-RS group than the control group (two-way ANOVA, post hoc Bonferroni, P < 0.0001). Western Blot analysis revealed similar levels of TLR4 expression in the caudal medulla of the naïve, vehicle and LPS-RS groups. These novel findings suggest that TLR4 signaling in the caudal medulla may mediate MO-induced acute dental inflammatory pain in rats.
Collapse
Affiliation(s)
- Helena F Filippini
- Programa de Pós-graduação em Odontologia, Escola de Ciência da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | | | - Maryam Zanjir
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | | | - Siew-Ging Gong
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Maria M Campos
- Programa de Pós-graduação em Odontologia, Escola de Ciência da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Limor Avivi-Arber
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.,Centre for the Study of Pain, University of Toronto, Toronto, ON, Canada
| | - Barry J Sessle
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.,Centre for the Study of Pain, University of Toronto, Toronto, ON, Canada.,Departament of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Deng H, Gao S, Lu S, Kumar A, Zhang Z, Svensson P. Alteration of occlusal vertical dimension induces signs of neuroplastic changes in corticomotor control of masseter muscles: Preliminary findings. J Oral Rehabil 2018; 45:710-719. [PMID: 29920731 DOI: 10.1111/joor.12682] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2018] [Indexed: 12/23/2022]
Abstract
PURPOSE To investigate the effect of altering occlusal vertical dimension (OVD) in patients with severe attrition on corticomotor control of the masseter muscles as assessed by navigated transcranial magnetic stimulation (nTMS). METHODS Seven patients (58.6 ± 8.4 years) with decreased OVD due to severe attrition were given mandibular occlusal splints to alter the OVD with the instruction to wear during the whole awake time for a period of four weeks. Motor-evoked potentials (MEPs) and the motor cortex maps of the masseter muscles and first dorsal interosseous (FDI) muscles as control were recorded by nTMS at baseline and at least 4 weeks after the alteration of OVD. The stimulus-response curves of MEPs were analysed with two-way repeated-measures ANOVA, and the numerical rating scale scores, motor thresholds, onset latencies, motor cortex maps and centre of gravity (COG) were analysed with paired t tests. RESULTS There was a significant increase in the amplitude of the masseter muscle MEPs (P = 0.036), but no change in the motor cortex map areas (P = 0.111) four weeks after the alteration of OVD. Furthermore, there was no significant difference in either the amplitude of the FDI muscle MEPs (P = 0.466) or the motor cortex map areas (P = 0.230) before and after OVD alteration. CONCLUSION The results suggest that alteration of OVD in patients with severe attrition was associated with signs of neuroplastic changes in the corticomotor control of the masseter muscles. The results of the study may add to our understanding of the putative mechanisms related to cortical changes in response to OVD alterations.
Collapse
Affiliation(s)
- Hongyan Deng
- Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Shang Gao
- Capital Medical University, Beijing, China
| | - Shengyi Lu
- Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Abhishek Kumar
- Division of Oral Diagnostics and Rehabilitation, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden.,Scandinavian Center for Orofacial Neurosciences (SCON), Aarhus, Denmark
| | - Zhenting Zhang
- Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Peter Svensson
- Division of Oral Diagnostics and Rehabilitation, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden.,Scandinavian Center for Orofacial Neurosciences (SCON), Aarhus, Denmark.,Section of Orofacial Pain and Jaw Function, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
3
|
Avivi-Arber L, Seltzer Z, Friedel M, Lerch JP, Moayedi M, Davis KD, Sessle BJ. Widespread Volumetric Brain Changes following Tooth Loss in Female Mice. Front Neuroanat 2017; 10:121. [PMID: 28119577 PMCID: PMC5220047 DOI: 10.3389/fnana.2016.00121] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 12/01/2016] [Indexed: 12/19/2022] Open
Abstract
Tooth loss is associated with altered sensory, motor, cognitive and emotional functions. These changes vary highly in the population and are accompanied by structural and functional changes in brain regions mediating these functions. It is unclear to what extent this variability in behavior and function is caused by genetic and/or environmental determinants and which brain regions undergo structural plasticity that mediates these changes. Thus, the overall goal of our research program is to identify genetic variants that control structural and functional plasticity following tooth loss. As a step toward this goal, here our aim was to determine whether structural magnetic resonance imaging (sMRI) is sensitive to detect quantifiable volumetric differences in the brains of mice of different genetic background receiving tooth extraction or sham operation. We used 67 adult female mice of 7 strains, comprising the A/J (A) and C57BL/6J (B) strains and a randomly selected sample of 5 of the 23 AXB-BXA strains (AXB1, AXB4, AXB24, BXA14, BXA24) that were produced from the A and B parental mice by recombinations and inbreeding. This panel of 25 inbred strains of genetically diverse inbred strains of mice is used for mapping chromosomal intervals throughout the genome that harbor candidate genes controlling the phenotypic variance of any trait under study. Under general anesthesia, 39 mice received extraction of 3 right maxillary molar teeth and 28 mice received sham operation. On post-extraction day 21, post-mortem whole-brain high-resolution sMRI was used to quantify the volume of 160 brain regions. Compared to sham operation, tooth extraction was associated with a significantly reduced regional and voxel-wise volumes of cortical brain regions involved in processing somatosensory, motor, cognitive and emotional functions, and increased volumes in subcortical sensorimotor and temporal limbic forebrain regions including the amygdala. Additionally, comparison of the 10 BXA14 and 21 BXA24 mice revealed significant volumetric differences between the two strains in several brain regions. These findings highlight the utility of high-resolution sMRI for studying tooth loss-induced structural brain plasticity in mice, and provide a foundation for further phenotyping structural brain changes following tooth loss in the full AXB-BXA panel to facilitate mapping genes that control brain plasticity following orofacial injury.
Collapse
Affiliation(s)
- Limor Avivi-Arber
- University of Toronto Centre for the Study of Pain, University of TorontoToronto, ON, Canada
- Faculty of Dentistry, University of TorontoToronto, ON, Canada
| | - Ze'ev Seltzer
- University of Toronto Centre for the Study of Pain, University of TorontoToronto, ON, Canada
- Faculty of Dentistry, University of TorontoToronto, ON, Canada
- Department of Physiology, Faculty of Medicine, University of TorontoToronto, ON, Canada
- Department of Anesthesiology, University Health NetworkToronto, ON, Canada
- Central Institute of Mental Health, University of HeidelbergMannheim, Germany
| | - Miriam Friedel
- Mouse Imaging Centre, Hospital for Sick ChildrenToronto, ON, Canada
| | - Jason P. Lerch
- Mouse Imaging Centre, Hospital for Sick ChildrenToronto, ON, Canada
- Medical Biophysics, Faculty of Medicine, University of TorontoToronto, ON, Canada
| | - Massieh Moayedi
- University of Toronto Centre for the Study of Pain, University of TorontoToronto, ON, Canada
- Faculty of Dentistry, University of TorontoToronto, ON, Canada
| | - Karen D. Davis
- University of Toronto Centre for the Study of Pain, University of TorontoToronto, ON, Canada
- Department of Surgery, University of TorontoToronto, ON, Canada
- Institute of Medical Science, University of TorontoToronto, ON, Canada
- Division of Brain, Imaging and Behaviour - Systems Neuroscience, Krembil Research Institute, Toronto Western Hospital, University Health NetworkToronto, ON, Canada
| | - Barry J. Sessle
- University of Toronto Centre for the Study of Pain, University of TorontoToronto, ON, Canada
- Faculty of Dentistry, University of TorontoToronto, ON, Canada
- Department of Physiology, Faculty of Medicine, University of TorontoToronto, ON, Canada
| |
Collapse
|